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EXECUTIVE SUMMARY 

At the beginning of 2004, human health risk management of animal antibiotic use has 
reached a crucial juncture for public health officials and risk management policy-makers 
worldwide. There is an opportunity to use Risk Analysis in regulatory and public health areas 
as the overarching process that will bring divergent viewpoints and complex real-world 
interactions into focus, to allow for appropriate risk management decisions to be made and 
communicated. 

This report reviews the logic, process, and methods of quantitative risk analysis for 
food borne bacterial and antimicrobial resistance hazards, as well as several proposed 
qualitative scoring approaches. It shows that a quantitative Rapid Risk Rating Technique 
(RRRT) based on top-down estimation and multiplication of Exposure, Dose-Response, and 
Consequence factors, as suggested by WHO (2003), is at least as simple as qualitative rating 
approaches and gives more useful, data-driven and meaningful results. Several examples 
illustrate the approach. Guidance is offered for how best to carry out the steps in a risk 
assessment and risk analysis process for animal antibiotics to identify risk management 
actions that are most likely to protect human health. 



BACKGROUND 

Risk assessment has long been endorsed by national governments and international 
organizations as a means for authorities to use science to prioritize the use of limited 
resources to concentrate efforts against those hazards of most concern to public health. In the 
United States, the National Academy of Sciences developed criteria in a 1983 study that was 
partially sponsored by the Food and Drug Administration. The 1983 NAS report set forth the 
essential elements of risk assessment which are in common use today. These serve as the 
basis for the subsequent work of Codex, WHO and FAO in reviewing chemical and food 
residue risks and, more recently, in assessing microbial food-borne hazards. 

In 1997, the Codex Alimentarius Commission (CAC) adopted the following 
“Statements of Principle Relating to the Role of Food Safety And Risk Assessment 
(ALLNORM 97/33)“: 

I. Health and safety aspects of Codex decisions and recommendations should be based 
on a risk assessment, as appropriate to the circumstances. 

2. Food safety risk assessment should be soundly based on science, should incorporate 
the four steps of the risk assessment process [i.e., hazard identification, exposure 
assessment, exposure-response modeling, and risk characterization], and should be 
documented in a transparent manner. 

3. There should be a functional separation of risk assessment and risk management, 
while recognizing that some interactions are essential for a pragmatic approach. 

4. Risk assessments should use available quantitative information to the greatest extent 
possible and risk characterizations should be presented in a readily understandable 
and useful form. 

In March 1999, the WHO/FAO held a consultation in Geneva, Switzerland on the 
application of risk assessment to microbiological hazards in foods. This was followed by 
several other consultations to develop risk assessment documents on specific food borne 
pathogens such as Listeria, Campylobacter, and Vibrio spp. The consultation served to 
advise member countries and the CAC on the use of this methodology in setting food 
standards important to public health and international food trade. 

In June 1999, the CAC adopted “Principles and Guidelines for the Conduct of 
Microbiological Risk Assessment” (CAC/GL-30 1999), which set forth the scope, definitions 
and guidelines for the conduct of quantitative or qualitative risk assessment to microbial 
hazards. The definitions and guidelines follow very closely the principles first elaborated by 
the National Academy of Sciences 20 years ago. 

The Office of International Epizootics Ad Hoc Group on Antimicrobial Resistance 
elaborated principles for risk analysis tailored to address antimicrobial resistance in animals. 
The OIE principles are similar in many respects to those elaborated by the Codex and NAS 

5 



for microbial risk assessment but may not be as applicable to food safety since the OIE is the 
organization primarily involved with setting standards for the control and prevention of 
global animal diseases. Evaluation of food safety risks involves a farm to table evaluation 
with consideration of factors well beyond the farm. Key recommendations from the OIE to 
effectively manage antimicrobial resistance risk issues include the following 
(http:Nwww.oie.intieng/publicat/rt/2OO3/VOSE.PDF): 

1. 
2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

“Risk analysis should be conducted in an objective and defensible manner 
The risk analysis process should be transparent and consistent - risk analysis should 
be conducted as an iterative and continuous process 
Risk management and risk assessment functions should be kept separate to ensure the 
independence of decision-making and evaluation of the risk 
Risk management should be conducted in reference to a policy framework setting out 
the domain of the regulator and the range of risk reduction actions that may be 
considered 
The risk assessment should be based on sound science and conducted according to a 
strategy established by the risk managers in co-operation with the risk assessors 
Risk assessment requires a multidisciplinary team and should be conducted in broad 
consultation with available scientific expertise 
Qualitative risk assessment should always be undertaken, and provides information 
on whether progression to full quantitative risk assessment is feasible and/or 
necessary 
Risk assessment of antimicrobial resistance issues requires very specific, technical 
skills that may not be available to developing countries. The OIE and its Member 
Countries should work towards helping these countries to develop or access these 
skills, to ensure that risk assessment itself doesnot become a barrier to trade 
Communication between managers, assessors and stakeholders is essential. Effort 
should be made to establish such communication early in the process, to allow 
opportunity for responses, and should be continued throughout the risk analysis 
process.” 

In 1994, the WTO Agreement on the Application of Sanitary and Phyto-Sanitary 
Measures (SPS Agreement) established science as the key basis for measures by WTO 
Members aimed at protecting human health and animal or plant life or health. The WTO 
SPS Agreement recognizes the role of science, harmonization, and international standards- 
setting bodies in formulating public health and food safety measures. Article 2.2 of the SPS 
Agreement states that such measures should be “based on scientific principles” and on 
“sufficient scientific evidence.” In addition, Article 5.1 provides that WTO Members “shall 
ensure that their sanitary and phyto-sanitary measures are based on an assessment, as 
appropriate to the circumstances, of the risks to human, animal or plant life or health, taking 
into account risk assessment techniques developed by the relevant international 
organizations.” 

This document presents principles of risk analysis and risk assessment for food-borne 
pathogens, including both susceptible and resistant strains. It builds on the earlier efforts just 
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described, and seeks to distill the most sound and useful principles for supporting improved 
risk management decision-making with data-based, scientifically valid analysis, as required 
by the WTO. 

Objectives 

This guideline was developed to support risk analysis for the use of antimicrobial 
agents in food animals and their potential impact to the public health. It builds on previous 
Codex guidelines for microbiologic risk assessment and specifically to guidelines relating to 
antimicrobial resistance published by the OIE, US FDA-CVM, and Australia. 

This risk evaluation guideline is based on WHO/FAO guidelines, but also considers the 
best practices among individual country guidelines and approaches to risk assessment. It 
emphasizes the transparency, objectivity, and logic of the best risk analysis guidelines, as 
well as the practicality of using them with existing data. It seeks to provide principles useful 
for qualitative, semi-quantitative and fully quantitative risk analyses. 

Positioning of this guideline in the risk analysis process 

Risk analysis has been defined in Codex as “The process composed of risk 
assessment, risk management and risk communication”. It describes a complete process for 
addressing a risk issue. It encompasses assessing and managing the risk together with all the 
appropriate communication between risk assessors, stakeholders and risk managers. 

This guideline defines procedures for preparing risk assessment reports that would be 
consistent with internationally-accepted practice for risk assessment and thus to support a 
national regulatory authority in assessing and managing risks. The risks considered include 
probability of the loss of benefit of antimicrobial therapy in humans due to acquired 
resistance (resistant bacterium or resistant determinants) through the use of a specific 
antimicrobial agents in animals. This guideline also incorporates potential human health 
benefits of antimicrobial feed additives, such as, improved animal health, food production, 
food security, and improved food safety. 

OIE states that “qualitative risk assessment should always be undertaken, and 
provides information on whether progression to full quantitative risk assessment is feasible 
and/or necessary”. Thus, qualitative risk assessment can play a valuable screening and 
prioritization role. This document therefore discusses principles and procedures for 
qualitative risk assessment as well as for quantitative risk assessment. 

Methods for conducting quantitative risk assessments have been extensively 
developed, and many detailed technical methods and principles of study design and data 
analysis are now available to support the successful execution of microbial risk assessments 
and antimicrobial risk assessments in food safety. Appendix A outlines relevant technical 
approaches and methods that can be useful in achieving the goals of risk analysis. 





RISK ANALYSIS 

DEFINITION OF RISK ANALYSIS 

Risk analysis provides methods, principles, and high-level procedures for using 
scientific data to assess and compare the probable consequences of exposures to different 
hazards (i.e., sources of risk) and to rationally evaluate and choose among alternative risk 
management decision options. It is often divided into stages of risk assessment, risk 
management, and risk communication, organized as an iterative process. Table 1 
summarizes several traditionally defined steps in this process. Risk analysis quantifies the 
probable human health consequences, both positive and negative, and other (e.g., animal 
health, environmental) consequences of alternative risk management decisions. 

Health risk assessment estimates the health risks to individuals, groups (e.g., the old, 
the young, or the immune-compromised), and entire populations from hazardous exposures 
and from the decisions or activities that create them. Health risks are measured by the 
changes in probabilities and magnitudes (or in frequencies and severities) of adverse health 
effects caused by exposures. Individual risks of sporadic illnesses may be expressed as 
expected numbers of additional adverse health effects per capita-year, by severity category 
(e.g., mild, moderate, severe, or fatal; see e.g., Buzbv, et al., 1996). Population risks sum 
individual risks over all person-years in the population. They may be expressed as expected 
numbers of additional adverse health effects per year of each type or clinical severity 
category occurring in the population. Population risks may also be further described by 
identifying sub-populations with especially high individual risks from exposure. 

Technical Note: Poisson Approximation. Use of expected number of events per year to quantify risk is justified 
for sporadic illnesses that occur independently or with only weak statistical dependence in large populations 
under the conditions of the Poisson or compound Poisson approximations. The expected number of cases per 
year then determines the full probability distribution of the total number of illnesses per year. For exact 
mathematical results, see httn://citeseer.nj.nec.com/372423.html; Barbour, 2000. 

Following the National Academy of Sciences framework for risk analysis, the US 
FDA, CDC and USDA defined risk assessment as a process that “consists of the following 
steps: hazard identification, exposure assessment, hazard characterization (dose-response), 
and risk characterization” (http://www.foodsafetv.gov/-dmsllmrisknl.html). Dose-response 
assessment is defined as “The determination of the relationship between the magnitude of 
exposure and the magnitude and/or frequency of adverse effects.” Similar concepts have 
been adopted internationally in WHO/FAO guidelines and OIE guidelines 
(http://www.oie.int/en~publicat/rt/2003NOSE.PDF). 

The main goal of risk assessment is to produce information to improve risk 
management decisions. It does this by identzfiing causal relations between alternative risk 
management decisions and theirprobable total human health consequences (including health 
benefits as well as health risks) and by identifying those decisions that make preferred 
outcomes more likely. Unlike informal expert decision analysis or judgment-based methods, 
health risk assessment uses explicit analytic (e.g., biomathematical, statistical, or simulation) 
models of the causal relations between actions and their probable health effects. In general, 
quantitative risk assessment applies specialized models and methods to quantify likely 
exposures and the frequencies and severities of their resulting health consequences. 
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Step Purpose and Description Relevant information and techniques Types of data that could be included for feed 
additive risk assessment 

Hazard Identify potential sources of harm or loss. l Hutnan data: Epidemiology, clinical and * Bacteria that have acquired resistance or 
identification These sources are called huzur& Hazard public health statistics. resistance determinants due to the particular 

identification identifies possible adverse l Animal tests and bioassays use of an antimicrobial in animals 
health effects of activities or exposures and l In vitro tests l Activity of drug, spectrum, bacteria of 
possible causes of observed adverse effects. l Structure-activity patterns, molecular concern, importance of drug to human 

modeling, pattern recognition and statistical medicine 
classification techniques 

Exposure Quantify the number of people receiving Environmental fate and transport models, . Animal use patterns, resistance 
assessment various levels or intensities of exposure to a possibly summed over multiple media (paths) mechanisms, genetic transfer, 

hazard over time. Relevant exposure metrics and sources phannaocokinetic data for gut activity 
tnay depend on dose-response relations. Studies of human activity patterns . Microbial contamination during processing, 

Biological monitoring of exposed individuals cooking of food; consumption patterns and 
and receptors demographics of human populations, etc. 

. Dose of bacteria causing disease; human 
transmission 

. Resistance monitoring results 
Quantitative Quantify the magnitude of risk created by A quantitative risk assessment (QRA) runs l Foodbome disease antibiotic treatment 
exposure- exposure of a target to a hazard. Characterize multiple exposure scenarios through a dose- options and outcomes; importance to human 
response and the probable frequency and severity of response model to predict likely health impacts. medicine 
dose-response adverse health outcomes or losses caused by Statistical, simulation, or biomathernatical l Resistance monitoring results 
rnodeling exposure to the hazard. models of biological processes are used to . Perceived future of the drug 

quantify dose-response relations. 
Risk Combine estimated probabilities and Monte Carlo shnulation calculates risks by No example provided 
characterization severities of health harm (adverse sampling tnultiple scenarios. Risk profiles, 

consequences), together with indications of probability distributions, and trade-off and 
uncertainty or confidence, to create an overall sensitivity analyses display risk, uncertainty, and 
summary and presentation of risk. variability. 

Risk Deals with how to present risk information to Psychological theories and models and No example provided 
:oinmunication stakeholders. Considers how different types behavioral/experimental findings on risk 

ofrecipients perceive risks and internalize/act perception and effective risk communication. 
on messages about them, in deciding what 
nressages to send via what media. 

Risk Decide what actions to take to control risks Risk-cost-benefit analysis, formal decision l Sunnnat-y of benefits to humans and 
nanagenrent and hazards - i.e., accept, ban, abate, analysis for groups and individuals, risk anhnals from use of the product 
Jecision-making monitor, further research, reduce, transfer, quantification and . Justification of risk management actions for 

share, mitigate, or compensate. comparison effectiveness, cost, value, etc. 
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Health risk management applies principles for choosing among alternative 
decisions, policies or actions that affect exposures, health risks, or their consequences. 
Risk management is often viewed as a process that takes scientific information obtained 
from risk assessment as input and that recommends choices of risk management actions as 
output. Alternative risk management approaches may include risk acceptance, prevention 
or avoidance (e.g., by reduction of microbial loads during processing or food preparation), 
mitigation of consequences (e.g., by appropriate clinical screening, diagnosis, and 
prescription procedures), transfer (e.g., health insurance) or compensation. 

Health risk communication characterizes and presents information about health 
risks and uncertainties to decision-makers and stakeholders. Risk assessment and risk 
communication should support effective risk management decision-making by providing 
the scientific information needed to compare alternative risk management interventions in 
terms of their probable impacts on exposures and the resulting frequency and severity of 
adverse health effects. If animal antibiotics reduce the frequency and severity of some 
adverse human health effects, then these impacts should be included as part of the complete 
risk assessment and communication package and should be taken into account in risk 
management decision-making. 

PURPOSES OF RISK ANALYSIS 

The primary purpose of health risk analysis is to support improved risk 
management decision-making. By definition, “better” risk management decisions are more 
likely to produce preferred consequences, i.e., fewer illnesses, mortalities, illness-days, and 
treatment failures per person-year. Health risk analysis also provides a framework for 
rational deliberation, conflict resolution, policy-making, and international harmonization 
about human health risks of commercial activities. It allows better-informed and more 
effective regulation of the production, distribution, preparation, and use of antimicrobials in 
food animals than approaches that are not driven by analysis of probable consequences of 
alternative decisions. Risk analysis also provides a framework for predicting how such 
activities interact with human behaviors - e.g., consumer or food worker behaviors in food 
handling and kitchen hygiene; physician decisions about what tests and treatments to 
prescribe when to which patients; and patient decisions about seeking and complying with 
physician instructions on antibiotic use - in determining the frequencies and magnitudes of 
adverse health outcomes. 

The risk management decision alternatives to be evaluated by risk assessment are 
often of the following types: 

l Status quo option: Do not take actions that will change current exposure patterns 
o Restriction OY ban: Take action to reduce current exposures to hazards. Examples 

include training and education programs, monitoring and enforcement activities, and 
HACCP programs. 

l Approval of new product or process: Take action (e.g., approve a new product, use, 
or product line extension) that may increase or modify current exposure patterns 
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Different data are typically available for evaluating these three types of options, with 
changes in uses of products that have already been.used for many years often having the 
most data, while approvals of new products must rely more on plausible worst-case 
assumptions, models and/or analogies to existing products. However, the same general 
logical assessment process applies to all types of risk management options. 

The main value and purpose of risk assessment in such cases is usually to quantify 
and compare the probable human health risks (i,e., expected change in the expected 
absolute or relative number and/or severity of foodborne illness cases per year in exposed 
populations) for each risk management decision option considered, conditioned on 
whatever information is available about it. Computational-statistical, mathematical and 
probability modeling, and computer simulation methods enable risk assessors to constrain 
and estimate human health risks and uncertainties quantitatively from realistic (incomplete, 
imprecise, inaccurate and perhaps inconsistent and incorrect) measurements and data. A 
pragmatic risk analysis perspective is that decisions can often be informed and improved 
even by imperfect measurements and incomplete facts, knowledge and data, if they provide 
some statistical information about probable human health consequences of risk 
management alternatives. This perspective is sometimes formalized in “value-of- 
information” (VoI) and sensitivity analysis calculations. It allows risk assessment to 
deliver useful results about probable risks and remaining uncertainties based on currently 
available empirical information, while also showing the potential for these results to change 
as further information is collected and indicating which information is likely to lead to the 
greatest changes. This information, in turn, is what risk management decision-makers need 
to make rational interim decisions and to identify what new empirical information would be 
required to justify future changes. 

DESIRED OUTPUTS OF RISK ANALYSIS 

A successful risk analysis shows the estimated changes in frequencies and 
magnitudes of human heath consequences caused by different risk management decision 
options. It also uses confidence intervals and other qualitative and/or quantitative displays 
to show uncertainties about the human health consequences of different decisions. It 
identifies a subset of one or more decision options leading to preferred probability 
distributions of health risks. Thus, a successfully completed risk analysis should allow a 
decision-maker to answer the following questions for each risk management decision 
alternative being evaluated or compared: 

e What probabte change in human health risk would be caused by each risk management 
intervention? If the risk management decision option or action being assessed is 
implemented, how will the probable adverse human health effects (e.g., expected 
numbers of mild, moderate, severe, and fatal illnesses per year; expected numbers of 
illness-days and, if desired, quality-adjusted life-years (QALYs) lost per year) change 
in the whole population and in sub-populations with distinct risks? 
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l How certain is the change in human health risk that would be caused by each risk 
management  action? Instead of a  single value, i.e., a  “point estimate” of risk, uncertain 
risks are characterized by intervals or probability distributions indicating how closely 
the change in human health risk caused by a proposed risk management  intervention 
can be predicted. There are several technical options for expressing uncertainty around 
point estimates (e.g., plausible upper and lower bounds or conf idence lim its, 
coefficients of variation, conf idence intervals, tolerance intervals, prediction intervals, 
Bayesian probability intervals, Bayesian posterior distributions, etc.) More elaborate 
uncertainty displays (e.g., conf idence contours for the joint distribution of frequency 
and severity components of risk) are available for specialists. The essential information 
to provide about uncertainty in any risk assessment is how large or how small the true 
risks m ight be, consistent with the data and with the specif ied assumptions of the risk 
assessment.  Point estimates that are “best” with respect to various technical statistical 
criteria will typically fall between these extremes. 

Technical note: Statistical point estimates and interval estimates. Many criteria have been used to 
define and identify “best” point estimates in risk models, e.g., maximum likelihood estimates (MLE), 
maximum a posteriori (MAP) Bayesian estimates, maximum entropy, minimum description length, least 
squares, minimum absolute deviation, minimum expected loss (for various loss functions). While these 
criteria have led to useful theory and algorithms for estimating the parameters of risk models, none of 
them is satisfactory as the sole output from a risk assessment. It is essential tu provide intervals or 
probabiliv distributions around any point estimate of risk to inform the users of a risk assessment about 
the full range of risks that might be caused by a risk management intervention. This principle applies to 
qualitative and fuzzy risk ratings as well. If a  point estimate of a risk is “High”, then some indication 
must be given of how certain this value is and of how compatible the frequency and severity components 
of the risk are with other qualitative labels, such as “Low”. A risk assessment that produces a single 
overall value for risk with no indication of uncertainty should be avoided. 

l What are the key drivers of risks and uncertainties for each option? The analysis 
should make clear to the user the main reasons why the estimated risk from each 
decision option is as high or low as it is. Are the results driven mainly by predicted 
exposure levels, by the responses of sensit ive sub-populations, by genetic or 
epidemiological data that establishes tight constraints on the plausible values, or by 
other factors? Sensitivitv analyses that plot how estimated risks would change as input 
assumptions and estimates vary within plausible ranges (e.g., within a  few standard 
deviations of their median values) can help to identify visually the combinat ions of 
input values that drive the main conclusions and the extent to which these could be 
changed without changing the comparison of different risk management  interventions. 

l W h ich risk management  interventions are undominated? One risk management  
intervention dominates another if it produces smaller probabilit ies of exceeding any 
specif ied level of adverse consequences per year. For example, if two different 
interventions lead to different expected numbers of sporadic salmonellosis cases per 
year (with the actual number being a Poisson random variable), and if the probable 
health consequences per case (e.g., the number of days of i l lness of a  given severity) is 
the same for each intervention, then the one giving the smaller expected number of 
i l lnesses per year dominates the other. If the expected number of cases per year for each 
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intervention is uncertain, and if the probability, that it exceeds any specified value is 
smaller for intervention A than for intervention B (for all possible specified values), 
then A dominates B. Scientific risk assessment can, at most, identify undominated risk 
management alternatives for risk managers to further assess and choose among, but 
stops short of being able to recommend an objectively “best” choice among multiple 
undominated interventions. 

EXAMPLE OF RISK ANALYSIS LOGIC AND OUTPUT: THE RRRT FRAMEWORK 

Although risk assessment models can be technically sophisticated and detailed, the 
main logic of health risk assessment is often straightforward and relatively easy to validate, 
to a useful degree, with empirical data. For example, the population risk of a foodbome 
illness can often be modeled as a product of factors, as follows: 

Population Risk = (expected number of contaminated servings ingested per year) * (expected 
illnesses caused per contaminated serving ingested) * texpected illness-days, mortalities, or other 
adverse consequences per illness) = Expected number of adverse human health consequences per 
year in the population. 

This product model can be abbreviated as: 

Risk = (exposure factor)*(dose-response factor)*(consequence factor). 

Such a multiplicative, top-down approach has been recommended on methodological 
grounds (Bailar and Travers 2002; FSRC, 2003) and has long been used by practitioners. 
Review of past studies and data may be required to estimate and document the values and 
uncertainty intervals (or approximate probability distributions) for these factors. While 
doing so may involve detailed data collection, calculations, and modeling, the overall logic 
is relatively simple and transparent. It can be applied to many direct risks from foodbome 
pathogens. An intervention that changes one or more of these factors will change the 
predicted population risk correspondingly. If a risk management intervention 
simultaneously affects multiple contaminants (e.g., multiple pathogens, or both susceptible 
and resistant strains of a pathogen), multiple food commodities, and/or subpopulations 
having distinct exposure-response relations, then summing the above product over all 
combinations of these multiple components gives the total impact on population risk. This 
is the basis of the Rapid Risk Rating; Technique (RRRT), discussed later. 

Table 2 shows an example of the beginning of a risk assessment calculation made in 
this RRRT framework. Appendix B explains the details (including the symbols used in the 
first column). For purposes of illustrating a portion of a risk analysis calculations and 
output, the most important points about the RRRT framework are as follows: 

0 Scope is matched to decision option being evaluated: The scope of the risk assessment 
calculation in Table 2 is to estimate the number of macrolide-resistant C. jejuni cases 
per year that: (a) Might be caused by use of macrolide products (e.g., Tylosin Premix 



and Tylosin Soluble) in chickens; and (b) Are severe enough to warrant treatment with 
erythromycin or another macrolide in current clinical practice, i.e., some potential 
clinical benefit might be achieved if the treatment is effective. Such a calculation 
would presumably be relevant for bounding the potential human health benefits (or, 
equivalently, human health risk reductions) from a risk management intervention that 
specifically restricts or eliminates the use of macrolides in chickens. It would not be 
appropriate for evaluating a ban on all animal growth promoters in a certain class (as in 
Europe) or evaluating introduction of a new product (e.g., a macrolide product line 
extension). However, it is appropriate for evaluating a risk management intervention 
that specifically affects macrolide use in chickens. To complete the risk assessment, it 
would be necessary to carry out similar calculations for other pathogens (e.g., C. co/i) 
affected by the risk management intervention being assessed. Rather than pursuing this 
in detail, an initial rapid screening assessment might simply document as an assumption 
that the risks from chicken-borne C. coli are not greater than those from chicken-borne 
C. jejuni, and use this assumption to bound the additional contribution from C. coli. 

TABLE 2: Example of a Top-Down Risk Assessment for Macrolide Use in Chickens 
Variable Values, Uncertainty Factors (UF) 1 Data Sources 

EXPOSURE: CURRENT RESISTANT CASES CAUSED BY ANIMAL ANTIBIOTIC USE 
Total current campylobacteriosis cases 1 13 37 cases/l 00,000 in 2002 for FoodNet 1 CDC, 2003 . 
reported per 100,000 people per year surveillance sample, UF = 1 
Fraction of C. jejuni cases that are severe 0.00595. (Uncertainty analyzed via Buzbv, et al., 
i.e., treatment with antibiotic is indicated sensitivity analysis.) 1996 
Average total severe cases per reported 8 (Ranges from 2 for severe cases to 38 Mead et al. 
severe case for mild cases; UF = 5) (1999) 
US population, N 292E6 = 2,920 x 100,000 people in US, US Census 

UF-1 Bureau 
Fraction of severe cases that are C. jejuni 0.99 (May be as low as 0.95), UF = 1 CDC DBMD 
Fraction of severe C. jejuni cases that are 0.10, uncertainty factor = 3-10, estimate Appendix B; 
caused by chicken products (including based on competing risk, genetic, 

-cross-contamination of other foods) epidemiological, and historical data 
Stem and 
Robach. 2003 

Fraction of chicken-caused severe cases 0.01 for erythromycin resistance, UF = 2 CDC, 2000 
that are antibiotic-resistant, (1 - s) 
Resistant severe C. jejuni cases per 1.84 cases/yr. for macrolides = (13.37E-5) Product of 
year caused by chicken products * 0.00595*8*292E6*0.99* 0 IO*0 01. above. -- -.=--.- L, 
= (P-)*(&r\n*(1-) = product of above UF = I8 (from component UFs of 5,10,2) 

l Simple, transparent calculation Zogic (Bailar and Travers, 2002). The calculations are 
based on multiplying a sequence of factors that have been estimated from documented 
data sources. Thus, if any of the cited values is thought to be inappropriate, or if more 
recent data become available, the specified values of the factors can be easily updated 
and the results recalculated. 

l CZearZy interpretable output. The main result in Table 2 is that the number of 
“Resistant severe C. jejuni cases per year caused by chicken products” is estimated to 
be 1.84 cases per year. This point estimate is accompanied by an uncertainty factor 
(explained below) of about 18, corresponding to a subjective Bayesian 95% probability 
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interval of [ 1.840 8, 1.84” 18 J = [O.l, 331 cases per year. This intermediate result does 
not yet consider the consequence component of risk, i.e., what fraction of these cases 
will seek medical care, be prescribed a macrolide antibiotic, experience treatment 
failure due to resistance, and suffer excess days of illness. Nor does it consider the 
preventable fraction of the exposures, i.e., the fraction of macrolide-resistant C. jejuni- 
contaminated chicken servings that would be removed (and presumably replaced by 
macrolide-susceptible C. jejuni-contaminated servings) in the event of a risk 
management intervention. By organizing the calculations as a multiplicative sequence, 
however, it becomes possible to stop the calculation part way through, yielding an 
upper-bound estimate on the final result of the complete exposure, illness, and 
consequence product calculation (since multiplication by additional fractions can only 
reduce the current result.) Thus, 1.84 is an upper bound for the point estimate of the 
preventable number of cases per year that may experience a loss of clinical benefits due 
to macrolide-resistant C. jejuni from macrolide-exposed chickens. 

l Key drivers and sensitivity analyses. Inspection of the numerical values of the factors 
in the product calculation shows which ones have the greatest impact on the final 
results. In conjunction with uncertainty factors indicating how many times too high or 
too low the estimated values might plausibly, be compared to the true values, the 
estimated point values show what changes in factors might occur as additional 
information is collected and by how much such changes could increase or decrease the 
current point estimate of risk. In Table 2, the estimated fraction of cases that are severe 
enough to potentially benefit from antibiotic therapy is obviously a crucial parameter, 
as it reduces the overall product by a factor of 0.00595. This value is obtained from 
Buzby et al., 1996. Increasing or decreasing it ‘to ret-l ect more recent data, when they 
become available, will increase or decrease estimated risks proportionally. 

0 Uncertainty analysis. Uncertainty factors of about 1 (UF = 1) in Table 2 indicate 
quantities that are known with sufficient precision so that better information about them 
is not expected to make a significant change in the results. Uncertainty factors greater 
than 1 indicate that the point estimate may plausibly be too high or too low by the 
amount of the uncertainty factor. This is only one way to indicate approximate 
uncertainties, but is often useful for multiplicative models. Combining the quantified 
uncertainty factors using a central limit theorem (discussed in the following technical 
note) gives an estimated uncertainty factor of 18 to the point estimate of 1.84 cases per 
year. This provides the user with a sense of how many times larger or smaller than 1.84 
the true but unknown rate of cases per year might be, based on the quantified 
uncertainties and point estimates in Table 2. In addition to these quantified 
uncertainties, as already mentioned, changing the 0.00595 point estimate of the fraction 
of severe cases (from Buzby et al., 1996), or changing the scoping assumption that only 
these severe C. jejuni cases warrant treatment with antibiotics and might receive 
clinical benefits from such treatment, could lead to proportional changes in the point 
estimate of risk. 

Technical Note: SimpliJied multiplicative uncertainty factors. To enable quick approximate uncertainty 
analysis without Monte Carlo simulation, it is convenient to impose the artificial restriction that uncertainty 
about each parameter is approximated by a single multiplicative uncertainty factor. In other words, 
uncertainty about the point estimate x of an uncertain parameter X is expressed by an uncertaint);factor, UF, 

16 



such that the true value of X is considered equally likely to be above or below its point-estimated value, x, 
and there is a subjective 95% probability that the true value of X lies between x/UF and x*UF. The interval 
[X/UF, X*UF) is interpreted as a subjective Bayesian confidence interval for X. Although this simplified 
approach to uncertainty assessment is not flexible enough to represent arbitrary beliefs (e.g., it is 
inappropriate for representing quantities with zero as a plausible value, or proportions for which X*UF > I), 
it does allow uncertainty about each model parameter to be expressed, at least approximately, by a single 
number. Moreover, formulas for the human health benefits and risks from risk management interventions are 
often expressed as products of uncertain parameters, and may be expected to have approximately log-normal 
uncertainty distributions (Druzdzel. 1994). Uncertainty factors for components, say, ui, u2,. .., u,, of a 
product combine to yield the uncertainty factor for their product, via the formula: 

Uncertainty factor for product = exp(2*[(.5*In(u1))2 + (.5*In(s))’ + . . . + (.5*In(u,))2]05] 

(based on approximating the normal distribution on the log scale as a sum of normal distributions 
for the different components, each with an approximate 95% probability interval of 2 standard 
deviations.) For example, the uncertainty factors of 2, 5, and 10 in the top (“Exposure”) section of 
Table 2 combine according to this formula to give a total uncertainty factor of I8 for their product. 
This uncertainty factor approach is used only to make uncertainty calculations more transparent. 
Monte Carlo uncertainty analysis is more flexible and general, but less easy to manually verify. 

Technical Note: Monte Carlo uncertainty analysis. It is common practice to use Monte Carlo uncertainty 
analysis tools to assign probability distributions to factors such as those in Table 2 and to propagate these 
uncertainties through the calculations to obtain a probability distribution for the final calculated risk. A more 
general approach is useful for Bayesian Network and causal graph models in which the conditional 
probability distribution of the value of each node (representing a variable in the model) is determined by the 
values of the variables that point into it, perhaps with the values of some variables being observed as data. 
Then the conditional probability distribution for model variables can be calculated via well-developed exact 
computational algorithms (Zhang, 1998; Dechter, 1999). A simpler approximate method, now widely 
applied in health risk assessment modeling, is Monte Carlo simulation (Cheng and Drudzdel, 2000). If no 
Bayesian inference is required, then computer-aided risk assessment tools such as @RISKTM, CrvstaIBaIITM 
and AnaIvticaM can be used to sample values from the probability distributions of input nodes (nodes with 
only outward-directed arrows) and to propagate them forward through the deterministic formulas and 
conditional probability look-up tables (CPTs) stored at other nodes of the risk model to create approximate 
distributions for the values of output nodes (those with only inward-directed arrows). If Bayesian inference is 
to be used to condition on data while propagating input distributions to obtain output distributions, then 
specialized software such as the Bavesian Net Toolbox or WinBUGS can be used to perform the more 
computationally intensive stochastic sampling algorithms (typically, Gibbs Sampling and other Markov 
Chain Monte Carlo (MCMC) methods) required for accurate approximate inference in DAG models (Chenp, 
and Drudzdel, 2000; Chant and Tien, 2002). 

Table 2 has illustrated the calculations and an intermediate result for one risk 
management decision option: doing nothing, i.e., the status quo option. In other words, 
1.84 cases per year is a preliminary upper-bound point estimate (ignoring uncertainty 
factors, health consequences, and preventable fractions, as explained above) of the number 
of severe macrolide-resistant C. jejuni cases that may be deprived of clinical benefits of 
macrolide treatment each year in the absence of intervention. To support rational decision- 
making, however, it is essential to evaluate more than one option, i.e., to inform the 
decision-maker about the consequences of alternative choices. (Policy makers do not 
always heed this principle. For example, an alternative approach to decision-making is to 
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invoke “situation-action” rules in which surveillance and monitoring data are used to 
trigger pre-specified intervention actions whenever certain conditions are detected, without 
calculating or comparing the probable human health consequences of alternatives. 
However, risk analysis generally focuses on and strives to support rational, i.e., 
consequence-driven, decision-making, and we will continue to make this assumption.) 

The simplest alternative to the “do nothing” (i.e., status quo) option is to restrict or 
ban macrolide uses in chickens. The probable human health consequences of such an 
intervention, measured by the incremental number of illness-days caused or prevented, 
show the human health risks or benefits, respectively, of this option. Table 3 summarizes 
the main calculations and results. The detailed calculations and the symbols in the first 
column are explained later, in discussing Table 5; ,for the moment, the main point is just 
that a similar multiplicative framework to that used to calculate the risk estimate in Table 2 
can be used to calculate the human benefits of the status quo (i.e., the human health risks 
from replacing it with a specified alternative). For the point estimates in Tables 2 and 3, 
continued use of macrolides is estimated to prevent about 6602.1 additional C. jejuni cases 
per year (39.3 of them severe) that would be created if macrolide use in chickens ceased, 
due to increases in airsacculitis-positive (AS+) chicken flocks. (Other potential sources of 
animal and human health benefits, such as decreased necrotic enteritis, are not considered 
in this example but could be quantified similarly.) This significantly outweighs the 1.84 
severe macrolide-resistant cases per year estimated in Table 2 as being potentially 
preventable by changing the status quo. 

Table 3: Examale of a ToD-Down Benefit Assessment for Macrolide Use in Chickens 
HEALTH BENEFITS OF COP 

Variable 
Increase in fraction of chicken servings 
from airsacculitis positive (AS+) flocks 
if animal antibiotic use ceases, @  
Microbial load ratio factor 

Dose-resnonse ratio factor = ratio of 
risk-per-cm for 1 O-fold greater doses 
compared to current doses 
Incremental risk of campylobacteriosis 
per AS+ chicken serving, (P’ - P-) 
Incremental C. jejmi cases per year 
caused by increased AS+ chicken 
servings 
Average health consequence per case 
Additional illness-days per year 
Incremental severe cases per year 

‘INUED USE/ HE&LTH RISKS CAUSED 
Values and Uncertainty Factors (UF) 
0.005 assumed for macrohdes as base case. 
assuming 50% effective substitution and no 
increase in prevalence rates 
Estimated ratio of C. jejuni loads from AS+ 
compared to AS-birds = 10, UF = IO 
1 for linear no-threshold dose-response 
model; 0.3 for Beta-Poisson risk model; 
13.93 for log-exponential model 
Incremental risk = KJ*(risk 1 AS-) - (risk 1 
AS-) = 1,19E-4 per serving 
AF*MN(P+ - P-) = 
0,005*38*292E6*1.19E-4 = 6602.1 
additional cases/year. 
Q  + (1 - s)Qr = 6,128 days per case 

:0:458 = 6602.1*6.128 
39.3 severe cases/year = 0.00595*6602.1 
additional cases caused per year 

YABAN 
Data Sources 
Historical data 

Russell, 2003. 

Appendix B; 
Rosenquist et al., 
2003. FDA, 2001 -3 
Linear no- 
threshold model 
Product of above 

Marano, et al., 00 
Product of above 
Buzbv, et al., 
1996 

For completeness, Table 4 summarizes the potential, human health risks and benefits from a 
withdrawal of macrolides in chickens, including the’consequence component. 
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TABLE 4: Example of RRRT Risk-Benefit Assessment Calculations for Macrolides 
Variable 1 Values and Uncertainty Factors (UF) 1 

EXPOSURE: CURRENT RESISTANT CASES CAUSED BY ANIMAL ANTIBI( 
Total current campylobacteriosis cases 1 13.37 cases/l 00,000 in 2002 (for FoodNet 

Data Sources 
OTIC USE 
CDC. 2003 

reported per 100,000 people per year surveillance sample) 
Fraction of reported C. j@~i cases that are 0.00595 
severe (treatment with antibiotic indicated) 
Average total severe cases per reported severe 3 (Ranges from 2 for severe cases to 38 for mild 
case cases; uncertainty factor = 5) 
US population, N 292E6 = 2:920 x 100,000 people in US 
Fraction of severe cases that are C. jejuni 0.99 (May be as low as 0.95) 
Fraction of severe C. jejtmi cases that are 0.10, uncertainty factor= 3-10, subjective estimate 
food-borne and caused by chicken products based on comuetinp. risk, genetic, euidemioloeical, 
(including cross-contamination of other foods) historical data and bounds 
Fraction of chicken-caused severe cases that 0.01 for erythromycin resistance, UF = 2 

resistant chicken-caused severe cases that 
would become susceptible to analogous 
human antibiotics if animal antibiotic use 
ceased, p. 
Resistant severe C. jejuni cases per year 
caused bv chicken products 

are antibiotic-resistant, (1 - s) 
Preventable resistance fraction = Fraction of 1 11. (True value could be 0 based on temporal trend 

evidence before and after withdrawals. See 
discussion in text.) 
Point estimate: 0.3, UF = 3 

1.84 cases@. for macrolides = (WE-5) * 
0.00595*8*292E6*0.99* 0. I O*O.Ol; UF = 18 (from ~-~ 

= (PJ*(MN)*(b) = product of above factors component UFs of 5, 10,2) 
I 

CONSEQUENCE: PREVENTABLE C ~__ 
Fraction of resistant cases that are given an 
antibiotic to which they are resistant, r 
Fraction of in vitro “resistant” chicken-caused 
severe cases that do not achieve normal 
clinical benefit from treatment with resisted 
antibiotic, f 
Human health harm per severe resistant case 
treated with antibiotic that would be 
prevented if it were replaced with a 
susceptible case = 
(Qr - Q,) days of illness prevented 
Population risk = Preventable resistant 
cases (and illness-days) of severe C. jejwi 
per year expected in US 
P[( 1- s>*(P-) *W’J)MQr - Qd 

HEALTH BENEFITS OF CURREI’ 
Increase in fraction of chicken servings from 
AS+ flocks if animal antibiotic use ceases, @ 

Microbial load ratio factor 

Dose-response ratio factor = ratio of risk-per- 
cfu for IO-fold greater doses compared to 
current doses 
Jncremental risk of campylobacteriosis per 
AS+ chicken serving, (P’ - P-) 
Incremental C. jejuni cases per year caused 
by increased AS chicken servings 
Average health consequence per case 
Additional illness-days per year 
incremental severe cases per year 

RRENT HUMAN HEALTH CONSEQUENCES (3 
-0.5, UF = 2 

<I 

2 illness-days (assumed baseline value, starting point 
for sensitivity analysis) for severe cases; 0 days for 
non-severe and untreated cases 

I 1.84 illness-days&r. for macrolides; 

USE: INCREMENTAL HEALTH RISKS CAUSI 
0.005 assumed for macrolides as base case 

Estimated ratio of C. jejuni loads from AS+ 
compared to AS-birds = 10, UF = IO 
1 for linear no-threshold dose-response model; 0.3 
for Beta-Poisson risk model; 13.93 for log- 
exponential model 
Incremental risk = B*(risk 1 AS-) - (risk 1 AS-) = 
1.19E-4 per serving 
AF*MN(P+ - P-) = 0.005*38*292E6*1.19E-4 = 
6602.1 additional cases/year. 
sQs + (1 - s)Q, = 6.128 days per case 
40,458 = 6602.1*6.128 
393 severe cases/year = 0.00595*6602.1 

Buzbv, et al.. 1996 

Mead et al. (1999) 

US Census Bureau 
CDC DBMD 
Avvendix B; Stem 
and Robach, 2003 

CDC, 2000 

Haves and Jensen 
m; Gaudreau and 
Gilbert, 2003 1998 f-t 

Product of above. 

RESISTANCE 
FDA-CVM. 2001 

Upper bound 

Ang and Nacham, 
2003. See discussion 
in text. 

Product of above 
factors 

)BYABAN 
Assumes 50% effectiv 
substitution, no increa 
in prevalence rates 
Russell. 2003. 

Avvendix B; 
Rosenauist et al., 
2003. FDA. 2001 -, 
Assumes linear no- 
threshold model 
Product of above 

Marano. et al.. 2000 
Product of above 
Busby. et al., 1996 
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OTHER CONSIDERATIONS AND EXTENSIONS OF RRRT CALCULATIONS 

In addition to its direct effects on resistance levels and pathogen loads reaching 
consumers, withdrawal of an animal antibiotic may have important indirect effects that 
depend in part on the decisions and behaviors of human stakeholders as they adapt to the 
ban and/or that are transmitted via other causal pathways than those addressed in the 
model. Examples of such additional considerations, with brief comments, are as follows. 
0 Antibiotic substitutions and synergies. Following the ban on antibiotics used as growth 

promoters in food animals in Europe, therapeutic use of other animal antibiotics to treat animal 
diseases increased significantly (Casewell et al., 2003). By analogy, withdrawing macrolide 
use in the US might cause an increase in airsacculitis-positive (AS+) flocks that could be 
treated by veterinary prescriptions of enrofloxacin. Conversely, withdrawing enrofloxacin 
might be compensated for by increasing use of macrolides to prevent infections leading to AS+ 
flocks. If both macrolides and fluoroquinolones were withdrawn, however, the increase in AS+ 
flocks might increase far more than if either one alone is withdrawn. 

* Other animal bacterial diseases. Macrolides and streptogramins (virginiamycin) are effective 
against necrotic enteritis (NE) caused by Clostridium perj?ingens (e.g., Bremran et al., 2001; 
Vissiennon et al., 2000). Following the 1999 ban on these and other growth promoters in 
Europe, NE rates in some countries increased sharply before settling to new, higher levels with 
increased use of therapeutic drugs (e.g., Lovland and Kaldhusdal, 2001; Madsen and Pederson, 
zoo0). If human health risks from NE+ flocks are comparable to those from AS+ flocks, then 
the human health benefits from continued use of macrolides and virginiamycin to control NE 
may be significant. 

* Otherjbodborne human pathogens. This example RRRT assessment has focused on C. jejuni. 
Although C, coli cases are only a small percentage of total campylobacteriosis cases, they have 
much higher resistance rates - 22.5% against erythtomycin, compared to 0.5% for C. jejuni, 
according to Fedorka-Crav et al, 2001. If resistance rates in C. coil are about 45 times as great 
as for C. jejuni and C. coli constitute a few percent of the total cases, then the human health 
benefits from withdrawing macrolides couId be about double those estimated in Table 4 for C. 
jejuni. Conversely, Russell (2003) reported significantly greater average loads (although not on 
every rephcate) of Salmonella and other pathogens, as well as C. jejuni, in processed carcasses 
from AS+ compared to AS- flocks. The human health impacts from these other pathogens 
might significantly increase the estimated human health benefits from continued use of animal 
antibiotics. The RRRT calculations could help to quantify these additional effects. 

l Co-selection and commensals. Macrolide use in chickens may co-seIect E. faecium that are 
resistant to streptogramins (SREFs), although the genes responsible for resistance to 
streptogramin A are rarely found in animal isolates. Since glycopeptides and linezolid are not 
used in food animals in the US, there is no potential for co-selection with genes that confer 
resistance to these two human-use only antibiotics. A risk assessment for virginiamycin (m 
and Popken. 2004, discussed below) indicates that, these risks are quantitatively very small 
(fewer than 1 expected excess mortality in 20 years). The contribution from continued use of 
macrolides is therefore predicted to be less than the rounding errors in Tables 3 and 4. 

l Reduced need to treat human patients with antibiotics. The bottom of Table 4 estimates that a 
ban or risk management intervention restricting continued use of macrolides could increase 
total campylobacteriosis by about 6602 cases per year. Perhaps about 10% of these cases might 
seek and receive treatment with ciproffoxacin or macrolide antibiotics, almost entirely as 
empiric treatments. Preventing these cases would remove these human antibiotic prescriptions, 
potentially reducing selection pressure for resistance in human pathogens and commensals. 
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Changes in prescription practices. As physicians and scientists become more concerned about 
avoiding over-prescriptions of antibiotics with doubtful clinical benefits, more rapid and 
accurate diagnostic and resistance-screening tests may continue to be developed (e.g., Endtz et 
al., 2000). These could reduce the prescription rate for resisted antibiotics in humans, and 
hence reduce the potential benefits of withdrawing animal antibiotic use. 
Opportunistic infections andpatient practices. If people treated with antibiotics for other (non- 
campylobacteriosis) reasons are thereby made significantly more vulnerable to infection by 
antibiotic-resistant Campylobacter ingested in chicken or other foods, then the benefits of a ban 
might be understated in the analysis in Tables 3 and 4 (essentially because P-would be greater 
than estimated for resistant campylobacter-contaminated servings). As explained in Appendix 
B, empirical evidence (e.g., Friedman et al (2000), Smith et al (1999) data) does not show a 
positive association between chicken consumption and risk of resistant campylobacteriosis, but, 
the possibility cannot be ruled out. Increasing awareness by patients and at-risk individuals of 
the need for care in food preparation, cooking, and handling would tend to attenuate any benefit 
from this hypothesized source. 
Emergence of resistance. A common concern is that the resistance fraction (1 - s) may drift up 
over time unless animal antibiotic use is curbed (FAAlR. 2002). However, biomathematical 
modeling suggests that, at least for antibiotics such as virginiamycin and macrolides that have 
been used for several decades in food animals without leading to high levels of resistance in 
people, an outbreak of high resistance in the future from this source is very unlikely (Cox and 
Popken, 2004b.) 
Timing: For simplicity, and to be conservative (i.e., maximizing the estimated risk of continued 
use of the animal antibiotic) the timing of human health impacts of a ban has so far been 
ignored: only the new levels that will eventually be reached have been considered. Evidence 
from Europe suggests that the hypothesized health benefits to human patients from banning 
animal antibiotics may take longer than 5 years to materialize (Heuer et al.. 2002; Borgen et al., 
2oo0, Iversen et al., 20021, while adverse impacts on increased animal pathogen loads (e.g., 
Madsen and Pederson, 2000) and possibly on human health (Eurosurveillance, 2000) may be 
much more immediate. If so, then modeling the timing of impacts might further increase the 
benefit-to-risk ratio for continued use of animal antibiotics in this example. 

In summary, while the analysis in this example has focused on C. jejuni transmitted via 
chicken servings, other important considerations may tend to strengthen the conclusion that 
human health risks from withdrawing or restricting macrohde use in chickens could 
significantIy outweigh potential human health benefits. Such additional comparisons and 
information can be included in an expanded quantitative human health risk analysis, but if 
their main effect is to strengthen the already strong comparison of options in Table 4, then 
the additional resources and effort required to quantify them further may not be 
worthwhile, i.e., better information on these points may not lead to any change in the 
relative evaluation of decision options. In this case, the additional information in further 
quantitative risk assessment would have no incremental vahre for risk management 
decision-making. A key prescriptive principle of value-of-information analysis is not to 
pay for information that does not have the potential to change the risk management 
decision. 
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CRITERIA FOR A SUCCESSFUL RISK ANALYSIS 

A successful risk analysis does the following: 

l Scope the analysis to support decisions by estimating the causal relation between 
decisions, exposures, and their probable total human health consequences. To 
guide rational regulatory decision-making, traditional quantitative risk analysis 
seeks to quantify the causal relation between, regulatory actions that might be taken 
and their total probable human health consequences. 

l Evaluate proposed solutions, not problems. The risk analysis should yield 
qualitative and/or quantitative evaluations of proposed risk management actions. A 
successful risk analysis shows the estimated frequencies and magnitudes (and 
uncertainties) of human heath consequences caused by different proposed risk 
management decisions. It is important to identify an adequate range of risk 
management options to assure that dominant alternatives are not overlooked. 

l Evaluate total human health impacts. Total health consequences are found by 
summing the impacts of proposed actions on human exposures to microbial loads of 
bacterial species (both resistant and susceptible) over all relevant pathways that 
contribute significantly to the outcome (e.g., different food animal species, drinking 
water, home-cooked meals, restaurant dining, etc.) Applying a qualitative or 
quantitative exposure-response model to the changed exposures for different 
decisions then yields the estimated risks associated with them. 

l Communicate clearly and enable effective participation. A well-conducted risk 
analysis enables its recipients to participate more effectively in risk management 
deliberations and to communicate questions and concerns more clearly and 
concisely than would otherwise be possible. It does so by providing the relevant 
information needed to determine the probable consequences of proposed actions 
and by showing how sensitive these predicted consequences are to specific 
uncertainties and assumptions in the analysis. 

Bailar and Travers (2002) suggested additional pragmatic criteria, including: 

l Reduced demand on resources 
l Common format 
l Reduced demands for data 
l Easy comprehension by non-experts; and 
l Ready adaptation. 

They recommend a multiplicative model, similar in concept to the RRRT approach in 
Table 4, to meet these criteria. They state that such a model should estimate the annual 
number of symptomatic infections by the organism #of interest in a specific population; the 
fraction of those occurrences in which the bacterial strain was clinically resistant to the 
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antimicrobial or class of antimicrobials under study; the annual number of occurrences in 
which infection by a resistant strain led to the specific adverse health outcome(s) under 
study; and the fraction of the adverse outcomes in which the antimicrobial resistance was a 
result of the farm use or category of uses under study. These four factors are a subset of 
those considered in Table 4, which also addresses the preventable fraction of such cases, 
i.e, the fraction that could be prevented (or caused) by a change in animal antibiotic use. 

The following sections address the components of risk assessment, risk 
management, and risk communication more fully, with emphasis on risk assessment. 
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RISK ASSESSMENT 

DEFINITION OF RISK ASSESSMENT 

Risk assessment is defined by the Codex Alimentarius Commission as “A 
scientifically based process consisting of the following steps: (i) Hazard identification, (ii) 
Hazard characterization, (iii) Exposure assessment, and (iv) Risk characterization-” The 
following sections discuss each step in this process. Throughout the discussion, 
“scientifically based” is taken to mean: “Based on specifically identified, independently 
verifiable data sources and on explicitly stated, empirically testable hypotheses, models, 
and calculation formulas or algorithms.” 

ANIMAL ANTIMICROBIAL RISK ASSESSMENT: CONCEPTUAL FRAMEWORK 

To support effective risk management decisions, human health risk assessments 
must characterize known or suspected potential causal relations between proposed risk 
management actions and their probable human health consequences. The actions typically 
affect exposures to sources of risk (i.e., “hazards”), while the consequences typically 
include changes in frequency or severity of resulting illnesses or deaths in the affected 
population and perhaps in various at-risk sub-populations. Impacts of changes in animal 
drug use can potentially be transmitted to humans by several causal paths, such as changes 
in exposures to microbial loads of both susceptible and resistant strains of bacteria in food 
commodities, and perhaps transfer of resistance determinants to humans via these or other 
bacteria. The medical consequences of changes in exposures to microbial hazards will 
depend on the resulting changes in illness rates, on patterns of resistance to human drugs 
among cases of food-borne illness, and on treatment and prescription patterns for patients 
receiving human antibiotics. Hazard identification consists of identifying the various 
causal paths that lead from risk management actions to their human health consequences. 

Figure 1 outlines a causal graph template (Shinlev, 2000) for assessing risks to 
humans from changes in animal drug uses. In this template, risk management actions that 
change current practices or activities such as animal drug use can thereby change exposures 
of individuals to potentially harmful agents (the hazards, typically one or more bacterial 
strains). Changes in exposures, in turn, change expected illness rates and hence adverse 
he&h consequences (e.g., illness-days or early deaths per capita-year) in susceptible 
members of the exposed population. If desired, different human health consequences can 
be aggregated into a single summary measure such as quality-adjusted life-years (QALYs) 
(Hazen, 2003), although this is optional. Effects of changes in animal drug use on QALYs 
lost per year in the population may be mediated: by behaviors (e.g., kitchen hygiene, 
cooking, and care-seeking behaviors), individual attributes (e.g., immune status, age, sex, 
and other covariates that affect susceptibility to infections), and physician prescription 
practices. These covariates may also influence each other (indicated by the brackets [] 
around them in Figure 1.) For example, an AIDS patient may have food consumption and 
preparation behaviors and receive medical care and prescriptions different from those of a 
non-AIDS patient. Risk management options (acts) are sought that decrease adverse health 
consequences, taking into account the distribution ofcovariates in the population. 

24 



FIGURE 1: A Causal Graph for Health Risk Analysis 
act -+ A exposure -+ A illnesses-+ A consequence -+ AQALYs 

? ?- T 
[behavior susceptibility treatment] = type of case 

Technical Note: Bayesian Network risk model. A useful mathematical and statistical framework for Figure 1 
interprets it as a Bayesian belief network (BN) or causal graph model (Charm and Tian, 2002). Each 
variable with inward-pointing arrows is interpreted as a random variable with a conditional probability 
distribution that depends only on the values of the variables that point into it. The essence of the forward 
Monte Carlo approach to modeling and evaluating uncertain risks in this framework is to sample successively 
from the conditional distribution of each variable, given the. values of its predecessors (ibid). Important 
microbiological processes, such as cross-contamination during processing of animal carcasses, are 
represented in such models onIy implicitly, by conditional probability distributions of microbial 
loads on outgoing (processed) carcasses, given the microbial loads on incoming carcasses. 
Algorithms exist to identify and validate possible causal graph structures from data (e.g., 
Tsamardinos et al., 2003) but are not yet routinely applied in risk assessment. 

For practical purposes, each choice of a risk management act in Figure 1 will 
generate an approximately Poisson-distributed number of incremental illness cases 
(“responses”) caused or prevented each year in each severity class (e.g., mild, moderate, 
severe, fatal) in the population (and in each sub-population, if there are several). The 
expected health consequences of this change can be calculated from the following three 
components models, common to most risk assessments: 
l An exposure model (the “act + Aexposure” link in Figure 1) that quantifies the 

average number of contaminated servings ingested per year, for population risk; or 
average contaminated servings ingested per capita-year, for individual risks. 
“Contaminated” here means carrying enough pathogenic bacteria (possibly just one) to 
pose an elevated risk of food-borne illness to susceptible consumers. The number of 
contaminated servings ingested per year is also approximately Poisson-distributed, and 
so is fully characterized by its mean. The exposure model may depend on a consumer’s 
“type”, i.e., on individual covariates such as food purchasing, preparation and 
consumption variables that affect exposures. 

l A dose-response or exposure-response model (the “Aexposure -+ Aillnesses” link in 
Figure 1) that quantifies the probability of illness or expected number of cases of a 
given severity (for infectious illnesses) per contaminated serving ingested. In general, 
this may also depend on the consumer’s “type”, i.e., on the combination of covariate 
values that affect risk for that individual, as well as on the dose ingested. 

l A health consequence model (the “Aillnesses + Aconsequence” link in Figure 1) 
quantifying probabilities of different health outcomes (e.g., survival vs. fatality, 
QALYs lost) from each case. These outcome probabilities may depend on physician 
prescription practices for different types of cases. 

These three sub-models determine the expected annual number of human illness cases in 
each severity class and the expected QALYs lost per year, for each choice of act. 
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In general, there may be several distinct bacterial strains, food animals and 
commodities, and at-risk sub-populations (perhaps including groups receiving different 
medical treatments) that are to be included within the scope of the risk assessment, since 
the goal of risk assessment is usually to quantify the totaZ human health impact of 
interventions such as changes in animal drug use. In this case, summing health impacts 
over all combinations (each corresponding to an instance of Figure 1) gives the total 
probable change in human health consequences for the act. 

The framework in Figure I can be implemented with more or less sophistication. 
Perhaps the simplest useful approach is to estimate the following three factors for each risk 
management act and path being evaluated: 

l Exposurefactor = average contaminated servings ingested per capita-year 
o Dose-response factor = expected cases of illness per contaminated serving ingested 
l Health consequence factor = expected QALYs lost (or illness-days, etc.) per case of 

illness. (Alternatively, a vector of expected numbers of different health outcomes, 
e.g., mild, moderate, severe, and fatal illnesses per case, can be estimated.) 

If these factors are multiplied by each other and by the number of people affected for each 
causal path (i.e., each bacteria-food-human sub-population combination of interest) for a 
risk management action, and if the resulting products are summed over all causal paths, 
then the sum provides an estimate of the total human health impact per year for that action. 
A more refined calculation can be made by considering how the factors are likely to change 
over time and then summing over time periods (perhaps with discounting). A simpler 
expedient is to assess and compare the steady-state equilibrium annual risks for different 
risk management scenarios after all transients have settled down. 

At the other end of the sophistication spectrum, instances of Figure 1 can be 
assessed and applied to risk estimation problems using conditional probability calculation 
techniques developed for Bayesian Networks and causal graphs (Charm and Tian, 2002; 
Tsamardinos et al., 2003; Shinlev. 2000). In this case, hazard identification consists of 
verifying that the causal path in Figure 1 leading from acts that change animal antibiotic 
uses to resulting changes in exposures, responses, and health consequences is consistent 
with available data. The remaining steps in the risk assessment process can be interpreted 
as quantifying and applying the Bayesian Network model. Within the Bayesian Network 
framework, the simple conceptual model of multiplying exposure, dose-response, and 
consequence factors together, as in Figure 1 and Table 4, generalizes to allowing arbitrary 
probability distributions for inputs and conditional probability relations or functions at the 
nodes to be combined by Monte Carlo uncertainty ,analysis to derive the joint probability 
distributions of outputs. The Bayesian Network modeling perspective is potentially very 
useful, but is not yet widely adopted in animal antibiotic risk analysis. 

BACKGROUND: SOME PREVIOUS RISK RATING APPROACHES 

Motivated in part by concerns that quantitative risk assessment of human health 
risks from animal antibiotic use (AAU) might, prove to be overly burdensome to 
implement, insufficiently credible, and/or require data that are not readily available or 
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assumptions of doubtful validity to bridge data gaps, several regulatory risk analysis groups 
have proposed qualitative rating approaches designed to avoid these pitfalls. For example, 
a three-component risk rating with components of “Hazard”, “Exposure” and “Impact” has 
been deveIoped in Australia. Risk is profiled with the help of the following 3 x 4 matrix: 

Australia 
Factor 
Hazard = 
source of 
risk 

Exposure 

Impact 

Source: 1 

lational Registration Authority Veterinary R ec 
Definition 
Antibiotic resistant microorganisms or their resistance 
plasmids (that have the potential to transfer to humans) within 
an animal species, atising from the use of an antibiotic in an 
animal speEies 
Amount and frequency of exposure of 
susceptible humans to antibiotic-resistant microorganisms (or 
their plasmids) from animal sources 
The evaluation of infections (caused by antibiotic-resistant 
pathogens of animal origin) in susceptible humans. 
Considers: a) Perceived or known clinical importance of the 
class of antibiotics to humans; b) Dose response assessment 
of relationship between frequency and magnitude of exposure 
of humans (dose) to antibiotic - resistant food-borne 
microorganisms and severity and/or frequency of the impact 
(response); including an estimate of the critical threshold of 
exposure required to cause infection in susceptible humans. c) 
Antibiotic-resistant disease severity, morbidity, mortality. 
d) Expected numbers of infections and deaths. e) The 
impact on human health and quality of life including the 
range of the susceptible humans expected to be affected. 
Probability of antibiotic-resistant infection development in 
susceptible humans (N, L, M, H) 

suiremen Its ; Se1 
Negligible 1 ,ow 

iapted from htt~://www.a~vma.~ov.au/~uidelineslvet~uidelinelO.~df. 

es Part 
vledium 

1 
High 

Separate risk summaries may be required for different bacterial species. The assessment 
also includes: 

l Uncertainty of data used in risk assessment, including both a) Uncertainty due to 
inherent variability and measurement error; and b) Uncertainty due to lack of 
information or understanding. 

l Benefits of use of antibiotic in Australian animal health; and 
0 “Risk”, characterized as “ProbabiZity of disease due to infection in susceptible 

humans after exposure of humans to antibiotic-resistant microorganisms (and genetic 
material) of animal origin and the severity of the impact of exposure on susceptible 
humans ‘. 

This framework contains many potentially useful ideas, including consideration of 
AAU benefits and uncertainties about AAU risks as part of the assessment; estimation of 
expected illnesses and deaths; distinction among illnesses of different severities; and 
identification of (perhaps multiple) susceptibIe sub-populations and multiple bacterial 
species if required to adequately characterize risk. However, the impact category contains 
items (e.g., dose-response relation and clinical importance of human antibiotics) that might 
be redundant once the expected number and severity of additional morbidities and 
mortalities caused by a change in AAU are known. In other words, dose-response and 
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clinical importance can be considered means to an end: predicting the change in human 
health impacts from a proposed change in AAU. Once the human health impacts are 
known, the factors used in calculating them are no longer needed to characterize risk. 
Moreover, the conceptualization of risk as “Probability of disease due to infection in 
susceptible humans after exposure of humans to antibiotic-resistant microorganisms (and 
genetic material) of animal origin and the severity of the impact of exposure on susceptible 
humans” may not be entirely satisfactory. For example, consider an extreme hypothetical 
case in which resistant strains have no ability to cause illness (zero virulence) and all 
illnesses are caused by susceptible strains - but susceptible and resistant strains typically 
occur together in infected patients. It is not clear that the risk concept defined here would 
attribute zero (or negligible) risk to the resistant microorganisms in such a case, even if 
they have no adverse effect on human health. Thus, in seeking to create a new risk rating 
system, it may be necessary to refine the concept of risk, even while using many of the 
ideas in the above framework. 

Canada has a somewhat similar qualitative rating system for risk analysis of plant pests, 
including bacteria, again using H = high, M = medium, L = low, N = negligible for risk, its 
components, and its impacts. Key aspects of this rating system are as follows: 

“Probability may be estimated under two broad scenarios: 1) In the baseline (or uncontrolled) 
scenario, probability is estimated under natural or status quo conditions. It is estimated in the 
absence of artificial or un-natural spread of the pest, and in the absence of “new” risk 
management actions being taken, beyond the status quo. 2) Alternatively, it may be appropriate 
to estimate probabilities under proposed risk management (or controlled) scenarios. The 
probability of the pest’s establishment is considered and succinctly described under three 
headings, including: a) the potential for its entry into the area through various pathways, b) the 
extent to which suitable hosts and habitat are available, and c) its potential for spread from the 
initial point of entry. . . . The final three headings of the rating system are concerned with 
impact or consequence of the pest, and include: a) the range of hosts, b) direct and indirect 
economic consequences, and c) general environmental impact. . ..The above probability and 
impact estimates are summarized in an overall risk rating of negligible, low, medium or high. 
Subsequently, the sources and magnitude of uncertainty of the estimation of risk are 
summarized in a description of the assumptions used in the estimation, a discussion of the 
nature and quality of the data, and a discussion of the supporting and conflicting evidence. 
Finally, a concise statement is included, noting whether the pest(s) or commodity represent a 
health hazard to humans or animals.” 
Source: http://www.Pov.on.caiOM~RAlen~ish/researchlriskas4c.html 

An important aspect of this system is that it considers the change in estimated probabilities 
of risk components if different risk actions are taken, This concept - using risk rating 
systems to link proposed risk management actions to their probable consequences, defined 
as changes in the probabilities (or of statistical frequencies in affected populations) of the 
outcomes of interest - can be applied to many settings other than the plant pest context. In 
particular, it suggests that the human health risk of a proposed change in AAU, such as 
introduction of a new product or withdrawal of an existing one, should be assessed by 
considering how human health impacts are likely to change if the proposed action is taken. 
This emphasis on the human health consequences of risk management decisions is 
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consonant with many recommendations that risk analyses should be decision-focused and 
provide information useful for assessing risk management decision options. 

The Canadian approach to qualitative risk rating has been extended to food safety 
risks. This framework is described as follows: 

Ontario Ministry of Agriculture and Food Risk Assessment Framework 

“Risk assessors are responsible for risk characterization. The risk is characterized by estimating in 
qualitative or quantitative terms, the probability of and the magnitude of the impact (or 
consequence) of the adverse effects of the disease. The risk is further characterized by noting the 
attendant uncertainty of the estimates, given the available data. 

When reliable quantitative data is available, assessors use quantitative multiplicative 
mathematical models to estimate risk. Often, the desired quantitative data are not available. In such 
cases a more qualitative approach is used. In either case, quantitative and qualitative assessments 
are summarized using a rating system to help categorize risks. The final rating assigned to a given 
hazard / commodity situation, is derived from six sub-ratings, each rated as negligible, low, 
medium or high. 

The first three sub-ratings are concerned with the probability of a human health impact 
being realized. This is influenced by several factors including the exposure characteristics of the 
situation. The final three sub-ratings are concerned with the impact of the disease, which is 
influenced by several factors including dose-response characteristics. This scoring system is used to 
help categorize risks in terms of their general importance. It is not used to rank individual risks in 
numerical sequence, but does attempt to place them in broad categories of negligible, low, medium 
or high risk. . . . 

The probability of exposure is considered under three headings: a) The probability of 
contamination of food along the food chain, by disease agents. It may require consideration of 
pathways for contamination of source animals or crops and of the product during processing, 
storage, distribution and preparation, b) The probability of significant exposure of susceptible 
human hosts to a dose sufficient to cause disease, c) The potential for broad distribution and/or 
secondary spread of the disease.. . . 

The impact (or consequence) of a hazard is the second component of risk. Currently, only 
negative human health impacts need to be described in a food safety risk assessment for the 
purposes of trade. Therefore, the emphasis of OMAF impact-assessment is on impact to human 
health. Disease impact is described in terms of its severity and frequency of debilitation, and its 
impact on quality of life. The OMAF model also briefly describes economic and environmental 
impacts of food safety hazards. 

Risk characterization and estimation are summarized in a concise statement noting the 
probability and impact of disease. The sources and magnitude of uncertainty of the estimation of 
risk, are summarized in a description of the nature and quality of the data, and a discussion of the 
supporting and conflicting evidence. If possible, the results of sensitivity and importance analysis of 
a quantitative mathematical probabihty model are summarized. Finally, an overall risk rating of 
negligible, low, medium or high is assigned. 
SOUKX?: h~p://www.eov.on.calOMAFRAlenglish/researchlrisWEras2c.html#f .0%20Risk%2OAssessmentl841 

This framework retains the feature of comparing probabilities of consequences with and 
without different risk management interventions. A key feature is its use of a multiplicative 
approach to aggregate the components of the risk rating when adequate data are available. 
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Thus, a microbial hazard that creates zero human exposure or for which exposure has zero 
human health impact could have a risk rating of zero even if other factors were very large. 

A more quantitative rating approach is the Brenner Scheme proposed in the U.K. 
for genetically modified microorganisms. (Since the new GM 2000 regulations, the 
Brenner Scheme is not used as the sole basis to classify risks for GMOs, but we are 
interested only in the aspects of it that might be useful for devising improved AAU risk 
rating approaches.) In this scheme, each of the following three factors is assigned an order- 
of-magnitude weight (e.g., 10q3, 10v6, or 10e9): 
l ACCESS = probability that the GM0 or DNA contained within it will be able to enter the 

human body and survive there. 
l EXPRESSION = measure of the anticipated or known level of expression of the inserted DNA 
l DAMAGE = measure of the likelihood of harm being caused to a person by exposure to a 

GM0 independently of access and expression 

These three risk factors are then multiplied together to give an overall risk factor, which is 
then used to look up the containment level required for the experiments. (Source: 
http://www.biology.ed.ac.uk/sbs/healthsafetv.htm.) 

The Brenner approach to GMOs, like the Canadian framework for food safety 
assessments, emphasizes a multiplicative approach for aggregating components of risk into 
an overall risk factor or risk score. Unlike the previous frameworks, however, it uses 
order-of-magnitude estimates of the components, rather than qualitative labels (H, M, L, 
N). The final risk rating is also used to look up the required risk management (containment) 
approach. Key ideas include using rough numerical estimates of risk factors or risk 
components; multiplying the results to get a rough quantitative estimate of overall risk; and 
mapping this rough quantitative risk estimate into a risk management decision category. 

Lessons from Previous Approaches 

Comparing the risk rating systems above suggests valuable components to include 
in any (qualitative or quantitative) risk rating system for animal antimicrobials. These are 
listed and discussed next, with particular reference to the US FDA’s Center for Veterinary 
Medicine (CVM’s) Guidance #152 document, which sets forth an approach to qualitative 
risk rating similar in some respects to those mentioned above. Some aspects of risk rating 
systems that might be useful to consider in designing future ones are as follows. 

1. Change in the frequency of adverse human health impacts for different risk 
management decisions. The current definition of risk in the US CVM’s Guidance #152 
is probability of “human illness that is caused: by a specified antimicrobial-resistant 
bacteria (sic), is attributable to a speci$ed animal-derived food commodity, and is 
treated with the human antimicrobial drug of interest. ” This definition makes no 
reference to the effects of any risk management decisions that the risk assessment might 
help to support. In addition, the probability .that a human illness is caused by a 
specified antimicrobial-resistant bacterium (e.g., for at least some member of a 
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population under at least some conditions) is less important than the)equency with 
which the illness occurs. A bacterium that is known with certainty to cause a very 
infrequent illness (probability = 1) may be of Iess concern than one that is only 
suspected of causing a very frequent or serious illness. 

Whether used in quantitative or qualitative risk ratings systems, the conceptual units of 
frequency are expected number of illnesses per year (in an identified exposed population), 
for population risks; and expected number of illnesses per capita-year for individual risks. 

Technical Note: Population heterogeneity. Frequencies should ideally be estimated for relatively 
homogeneous sub-populations, i.e., sub-populations whose members have approximately equal 
risks; otherwise inter-individual heterogeneity in risks must be addressed. Statistical techniques 
such as classification tree analysis and finite mixture distribution modeling can help to identify 
homogeneous sub-populations and to estimate frequencies for them from case-control, cohort, and 
longitudinal survey data. 

2. Severity of adverse human health impacts from different risk management decisions 
(e.g., proposed changes in AAU). Currently, the “Consequence” rating in Guidance 
#152 refers to the “importance” of human drugs, but not to the adverse human health 
consequences caused by AAUs. As suggested by the Impact portion of the Australia 
table, the severity of human health impacts Tom preventable illnesses should be a key 
component of the risk assessment. The conceptual units for severity are: expected 
adverse impacts per illness (e.g., mortalities, morbidities, illness-days, life-years lost, 
etc.), perhaps with morbidities tirther broken down by severity class (e.g., mild, 
moderate, severe) and with mortalities further classified by age group or number of life- 
years lost. Quality-adjusted life-years (Q4LYs) lost may also be used if the required 
assumptions (Hazen, 2003) are accepted and it is desired to aggregate diverse health 
impact metrics into a single summary measure. (As in the case of frequency, severity 
of health impacts should also ideally be assessed for multiple sub-populations, e.g., 
based on age, immune status, etc., if impact severity distributions differ significantly 
among them. Classification tree analysis and other modem statistical methods can help 
to identify relevant subpopulations from data if available.) 

The motivation for considering severity of human health impacts in rating risks is 
illustrated by the following example. Suppose that “probability of human illness caused by 
a specified resistant bacteria, attributable to a specified animal-derived food commodity, 
and treated with the human antimicrobial drug of interest” = 1, but that treatment with the 
human antimicrobial drug of interest is completely effective clinically (i.e., resistance 
makes no difference to clinical outcome). This situation should presumably be rated as less 
bad than one in which the probability is less than 1 but the impact is treatment failure and 
death due to resistance. To assure that the second situation is rated as worse, human health 
impacts must be considered. 

3. Causality of adverse human health impacts by proposed changes in AAU. As 
suggested by the Canadian approach, it is useful to be able to assess the change in 
expected adverse human health consequences caused specifically by proposed risk 
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management interventions. Consider again the Guidance #152 definition of hazard as: 
human illness caused by a specified resistant’ bacteria, attributable to a specified 
animal-derived food commodity, and treated with the human antimicrobial drug of 
interest = 1. If the presence of the resistant bacteria in the specified food commodity is 
not actually caused by an AAU, then it should not be considered part of the risk from 
the AAU. To take an extreme hypothetical example for clarity, suppose that a proposed 
ban on the associated AAU would have the net effect of causing more resistant bacteria 
to be ingested per capita-year (e.g., because the AAU is not the sole source of 
resistance and because withdrawing it would’ amplify the total microbial loads, 
including the resistant portion, reaching consumers.) This information might be 
important for risk management decision-making,‘but would not necessarily be apparent 
if only the risk of the italicized hazard above is assessed. 

4. Uncertainty about the changes in frequency and severity of adverse human health 
effects caused by a proposed change in AAU or other proposed risk management 
intervention. For example, what overall rating should be assigned to a situation that has 
a 50% chance of an “L” risk rating, a 30% chance of an “M” rating and a 20% chance 
of an “H” rating, depending on how scientific uncertainties are resolved? In the 
Canadian system, uncertainty is summarized along with risk characterization 
information before a final overall risk rating is applied. In the Brenner system, 
uncertainty about the component ratings is indicated by order-of-magnitude estimates 
and these uncertain estimates are then used to identify risk management responses. In 
the current CVM #152 Guidance, some uncertainty can perhaps be subsumed into the 
qualitative rating labels. In all of these systems, more explicit guidance on how to treat 
uncertainties in component ratings would be useful. 

5. Cumulative risk assessment, i.e., total risk summed over the multiple pathways by 
which changes in AAU propagate to cause resulting changes in exposures to microbial 
loads and consequent adverse human health effects. These pathways may include 
multiple bacterial species and/or multiple drugs to which co-resistance or cross- 
resistance may be increased by the AAU (or proposed change in AAU) whose risks are 
being assessed; multiple food products; and p&haps multiple human sub-populations 
affected. They may also include susceptible as well as resistant strains of bacteria if 
both are affected by the proposed change. The goal is to consider all major pathways 
by which the proposed change or intervention leads to significant changes in human 
health impacts, so that the total human health impact can be considered. 

6. Potential benefits to humans and animals from AAU or AAU changes. To inform 
rational risk management, the change in human health benefits, if any, from a proposed 
change in AAU must be assessed as well as changes in human health risks. Animal 
health benefits can also be listed separately in the overall assessment of likely impacts 
of proposed risk management interventions, as in the Australian system. 

7. Necessary and sufficient information; flexible estimation procedures and 
information requirements. Guidance #152, like the other systems considered, lists 
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many potentially relevant and informative data elements to be considered in the rating 
process. Exactly how these data elements should be assembled to build up a coherent 
account of the overall human health risk caused by a propose change in AAU is less 
clearly specified. It is therefore possible that several overlapping or partly redundant 
pieces of information that address essentially the same bottom-line concern (e.g., 
exposure, response probability, etc.) might be considered while leaving unaddressed 
other key information (e.g., on the human health impacts specifically caused by 
resistance-related treatment failures) needed for decision-makers to understand how 
changes in AAU will affect human health risks. 

8. MuZtipZicative aggregation. Guidance #152 is currently based on a look-up table that 
relates component ratings to overall risk rating in a pattern that could be interpreted as 
additive. By contrast, a multiplicative aggregation approach would allow the overall 
risk to be zero (or rated N = negligible) if any of its key components of exposure, 
exposure-response probability, or consequences is rated 0 (or N). 

As an example, suppose that the following ratios can be either rated (e.g., using an 
H, M, L, N scale) or estimated, perhaps to the nearest order of magnitude: 

l Exposure Factor = (A Exposure/A AAU) = (change in contaminated meals 
ingested per year) per (incremental animal treated with or exposed to the animal 
drug of concern). (Here, “contaminated” means contaminated with an 
infectious dose, i.e., one that is large enough to be cause illness in a susceptible 
exposed individual.) 

l Exposure-Response Factor = (A Illnesses / A Exposure) = (expected number of 
additional illnesses per year) per (contaminated meal ingested) 

e Consequence factor = (A Human Health Impacts /A Illnesses) = (expected 
number of adverse health consequences) per (illness case resulting from 
ingestion of a contaminated meal). If multiple impacts are considered, then 
separate consequence factors can be estimated for the different types of impacts 
(e.g., illness-days by severity category, mortalities, QALYs lost, etc.) 

Then for a given change AAAU in animal antibiotic use that leads to a release of bacteria 
from the farm and into the food commodity stream (perhaps corresponding roughly to the 
Release Factor), the corresponding human health risk would have an estimated value or 
rating determined by the product: 

Risk = Release * Exposure * Exposure-Response * Consequence 

where the four variable on the right-hand side are the factors just described. The 
conceptual units of risk are change in adverse human health consequences per year (or per 
capita-year, for individual risks) in the exposed population from the proposed change in 
animal drug use. Of course, this product is most appropriate for a single combination of 
the release, exposure, exposure-response, and consequence factors, and hence for a specific 
animal drug, bacterium, strain (susceptible or resistant), food commodity, exposed 
susceptible sub-population, and adverse effect category. To estimate or rate total risks, it is 
necessary to sum the risks over all combinations in the intended scope of the risk 
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assessment. Thus, multiplicative aggregation of component ratings or estimates is natural 
for each combination, while additive aggregation is natural across combinations. 

Technical Note: Combinations may be thought of as cells in a large contingency table (or as leaf 
nodes in a classification tree) of factor combinations determining expected illnesses per capita-year 
for exposed individuals. Given the number of individuals in each cell (its “size”) and the estimated 
expected illnesses per capita-year for individuals in that cell {its “risk” rate), the expected total 
illnesses per year in the population is the sum over ail cells of the size*risk product. The entire 
probability distribution of total illnesses will be approximately Poisson, and hence determined by 
the expected number of illnesses. The sum-of-products framework is useful for uncertainty 
analysis, as products of uncertain factors tend to be approximately log-normal, sums of uncertain 
products are approximately normally distributed (Cullen ,and Small), and sums of products may be 
insensitive to specific numbers (Hem-ion et al,.. 1996). 

Formal Analysis Results for Possibilities and Impossibilities of Rating Systems 

While several qualitative and semi-quantitative risk rating techniques have been 
developed, as discussed above, there has been little formal analysis of how well they 
accomplish their intended goals, nor even of what the specific, measurable goals and 
performance criteria for risk rating systems should be. 

Mathematical analysis can help identify the limitations of what any risk rating 
or risk ranking system can achieve. For example, suppose that a rating system is to be 
used to compare two different situations, AAUs, or decision options, A and B, to 
determine which should be ranked higher, e.g., in competing for scarce risk- 
management resources or in a priority order for regulatory concern and/or 
intervention. If the overall rating of risk is to be based on component ratings 
developed for several risk components or factors, as in all of the above examples, then 
the following abstract analysis may be useful. 

For simplicity, suppose there are three component ratings, although the 
following analysis holds for any greater number, of components, not just three. For 
example, the components might represent Hazard, Exposure, and Impact ratings, as in 
the Australian system; Probability of exposure, Frequency (or conditional probability) 
of response given exposure, and Severity of response ratings, as in the Canadian 

How system; or Access, Expression, and Damage scores in the Brenner svstem. 
should the overall risk rating of alternatives A and B depend on the component 
ratings? Some apparently reasonable properties might include the following. 

PosszMe Desiderata for Aggregating Compwwnt Scores into Final Risk Scores 

1. Which of alternatives A and B is rated higher in the overall risk rating should 
depend on& on their component ratings. Thus, the components used to rate risk 
should be sufficient to do the job: together, they should determine whether A is 
assigned a higher, equal, or lower rating than B. 

2. Which of A and B is rated higher on overall risk should be able to depend on 
each of their component ratings. Specifibally, if A and B are identical in all 
respects except that A rates higher or worse than B on one factor (e.g., 

34 



exposure), then B should not be rated higher than A in the overall risk rating. 
This property should hold for all the risk components: none of them is 
irrelevant. 

3. If A rates higher (or worse) than B on every component rating, then B should be 
rated no higher (or worse) than A in the overall risk rating. For example if A 
involves greater exposure, more illnesses, and more severe consequences than B, 
then A should receive a risk rating at least as high as B’s 

4. Risk ratings of A and B should be based on& on their own data, i.e., whether A is 
rated higher or worse than B should not depend on what other alternatives 
(other than A and B) are also being rated, if any. 

5. If one or more component ratings are zero (e.g., for exposure potential or for 
human health impact potential of exposure), then the overall risk rating should 
be zero (or “Negligible” in systems with that category). 

6. If the rating for a component is uncertain (e.g., if it has a 0.2 probability of 
being “L”, OS probability of being “M”, and 0.3 probability of being “H”), 
then the single “equivalent” rating assigned to it (i.e., H, M, or L after 
considering its uncertainty) should not depend on the ratings assigned to the 
other components. 

Although such logical relations among the component ratings and the overall risk rating 
may be desirable, they impose strong constraints on possible rating systems that satisfy 
them. For example, if quantitative ratings are used, then conditions such as 5 and 6 imply 
that the aggregation formula used to combine component ratings into an overall risk rating 
must be multiplicative, i.e., the overall risk rating is proportional to a product of its 
component ratings (http://facultv.washinqton.edu/imivamoffimfiles/cmb ZcoLpdf.) Such 
multiplicative aggregation of quantitative ratings satisfies properties 1-4. On the other 
hand, if only qualitative rankings are used for the components, then it turns out that there is 
no qualitative ranking system that can assign coherent overall risk rankings (meaning 
complete, transitive rank-orderings with ties allowed) based on arbitrary component rank- 
orderings in such a way that principles l-4 are satisfied. Similar limitations may hold for 
aggregating fuzzy ratings of linguistic labels or scales (e.g., H, M, L, and N), depending on 
how they are formalized (http://WWW.ie.boun.edu.tr/-taner/pubIications/papersleior.Ddf). In 
other words, qualitative component ratings may not contain enough information to be 
coherently aggregated into an overall qualitative risk rating that is related to them in 
desirable ways. 

Another possible concern is that a risk rating system with only a few possible 
outcome categories may not produce enough information to make a good decision if it is 
plot complex enough to support effective decision-making. For example, the Australia 3 x 4 
matrix assigning a label of H, M, L, or N to each of three components (Hazard, Exposure, 
and Impact) can provide only a small amount of information (technically, at most six bits 
of information, equal to the information content of six tosses of a fair coin) to guide 
decision-makers. Of the much larger quantities of potentially useful and relevant 
information collected and entered into such a rating scheme (several hundred bits at a 
conservative estimate), almost all is lost in aggregation during the rating process. The 
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small fraction that remains (6 bits in this case, or even less if the probabilities of the 72 
cells are not all equal) may be insufficient for effective decision-making, which typically 
requires at least enough information to discriminate among alternatives that have very 
differently preferred outcomes. The minimum amount of complexity and information 
required for a classification system (including a risk rating system) to make few errors can 
be rigorously analyzed via techniques from information theory and computational learning 
theory (see e.g., Goldman. Chapter 7 and Burnes. 1998). A key insight from such formal 
analysis is that a classification system that lacks enough complexity to discriminate well 
among essentially different situations may lead to poor decisions, i.e., ratings with high 
error rates and high expected losses from decision errors. 

Rather than further considering properties and limitations of risk rating systems in 
the abstract, we next focus on constructive approaches for achieving the goals for risk 
analysis and risk rating systems, building on the multiplicative framework advocated 
above. 
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RRRT: A RAPID RISK RATTNG TECHNIQUE FOR HUMAN HEALTH RISK AND 
BENEFIT ASSESSMENT 

Appendix B develops an example of an algebraic model for assessing the human 
health risks and benefits of a ban on antibiotic use in animals that affects a foodbome 
pathogen. Its two key formulas are as follows: 

EQUATION A: Expected direct human heaIth bene$t from ban = [p(l - s)(P-)MN]*[fr(Q, - QJ] 
illness-days prevented per year by reduced antibiotic resistance in foodbome pathogen = (expected 
resistant cases prevented per year)*(expected health consequence per case prevented). 

EQUATION B: Expected human health harm from ban = [AF(P’ - P-)]MN*[Q, + s(Q, - Qr)J 
illness-days per year in the human population, from reduced antibiotic prevention and control of 
animal bacterial diseases = (expected cases caused)*(expected consequence per case). 

Table 5 summarizes the interpretations and estimated values of the model parameters in 
these formulas, as calculated in Appendix B. (Intervals indicate ranges of values, roughly 
interpretable as subjective 95% probability intervals around the point intervals, for use in 
uncertainty analysis.) The bottom two rows evaluate the above formulas for these 
parameter values. The formulas can be applied to each animal antibiotic, meat commodity, 
pathogen, and human population affected by a proposed ban or other change in animal drug 
use, and the results summed to obtain total population risks and benefits from the 
intervention is expected to cause. A ban is expected to protect human health if and only if 
causes a risk reduction that exceeds the risk increase that it causes. 

The above two formulas have the following simple intuitive interpretations. The 
quantity (MN) gives the expected number of chicken servings ingested per year, while the 
product (P-)MN is the current expected number of resulting illnesses under the status quo 
(no ban), where (P-) is the current average risk of illness (i.e., expected number of illnesses 
caused) per serving. Each illness currently has probability (1 - s) of being resistant to the 
human antibiotic being considered (e.g., erythromycin) under current animal antibiotic use 
conditions. However, a fraction p of these currently resistant chicken-caused illnesses, 
called the preventable resistance fraction, would be prevented (i.e., replaced with 
susceptible rather than resistant pathogens) if the current animal antibiotic use ceased. 
Thus, the total number of resistant illnesses per year that would be prevented by a ban is: 
(P-)MN(l - s)p. Suppose that a fraction f of these would have experienced reduced 
treatment effectiveness or treatment failure due to resistance if treated with an antibiotic 
that they are resistant to, and that r is the probability of being treated with a resisted 
antibiotic. If the mean health impact is (Qr - Qs) additional illness-days (or quality- 
adjusted life-years (QALYs) lost, etc.) for each such case, then each resistant case 
prevented confers an average health benefit of f3-*(Qr - Qs), yielding the final formula 
Equation A for the total expected direct benefit from a ban. 
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TABLE 5: PARAMETERS FOR RAPID RISK RATING TECHNIQUE (RRRT) 
HEALTH R 

I Symbol 
N 

.ISK-BENEFIT ASSESSMENT MODEL 
Meaning 

Number of people in population 
Average number of servings of food commodity ingested 
per capita-year 
Average probability of severe (treatable) illness per serving 
from animals without disease. Includes indirect effects of 
cross-contamination of other foods. This probability is an 
average for the whole population; individual risks may vary. 
Excess probability of illness per serving from animals with 
disease (AS+ flocks). (Includes cross-contamination effects) 

Baseline value and source 
292E6 (U S Census) 

M 

P- 

P’ - P 

AF 

l-s 

Fractional change in prevalence of animals with untreated 
diseases if ban is implemented (and farmers substitute other 
treatments that are 50% as effective as the banned 
antibiotic) 
Fraction of the cases caused by bacteria in animal meat that 
are resistant to human antibiotic. (s = current susceptible 
fraction) 
Preventable resistance fraction = fraction of currently 
resistant illnesses caused by eating the food commodity that 
a ban would remove (i.e., make susceptible) 
Average human health harm (e.g., days of illness or 
QALYs lost) per susceptible case. Interpreted as “severity” 
of a case. 
Average excess human health harm (e.g., extra days of 
illness) per resistant case failing to respond normafly to 
antibiotic, for patients; or per untreated case for non- 
patients 
Probability that resistant case fails to respond normally 
(i.e., the same as a susceptible case) to assigned antibiotic 
therapy due to resistance 

Probability that a resistant case is assigned resisted 
antibiotic 

< 1.84 illness-days/yr. for macrolides 

40,458=0.005*1.19E-4 *[S-0.9362*2] *38*292E6excess 
illness-days per year = 6602 additional cases”6.13 
days/case. 

P 

QS 

Qr-Qs 

f 

E 

Risk 
prevented 

Risk createc 

Zg FDA-CVM. 2001, Cox and 
Popken. 2002 for fresh chicken 
1.6583E-8 = (total severe C. jejuni 
illnesses per year)*( fraction caused 
by chicken)/(total chicken servings 
ingested per year). See Annendix B. 

(for linear no-threshold 1 .I 9E-4 
dose-response model with microbial 
load ratio = IO, from Russell. 2003) 
0.5% (see Appendix B) 

Erythromycin: 0.01 

Erythromycin: <1 

6 days (Marano et al.. 2000) 

2 days (Estimated bound for current 
clinical practice (Anp. and Nacham, 
2003); 

Erythromycin: 5 1 [O, I] 

0.5, t0.25, l] 

P( 1 - MQr - QsP’WN 

NV’* - P-)l*EQr + s(Qs - Qr)l~ 

Equation B is equally interpretable. If a ban would cause an increase AF in the 
fraction of chicken servings from airsacculiti*s-positive (AS+) flocks instead of 
airsacculitis-negative (AS-) flocks, and if each such serving has an incremental probability 
(P’ - P) of causing illness, then the expected change in illnesses will be [AF(Pf - P-)]MN. 
Suppose that a faction s of these illnesses are susceptible and that the average health impact 
per illness caused is therefore [sQs + (1 - s)QJ, which may be rearranged as [Qr + s(Qs - 
Qr)]. Then the expected human health impact caused by the change AF in animal illness 
prevalence is: [AF(Pf - P-)]MN*[Q, + s(Qs - Q,.)],illness-days (Equation B). Equation A 
expresses the expected human health benefits from treatment failures prevented by 
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reducing resistance, while Equation B expresses the expected human health harm caused by 
reduced prevention of animal illnesses and associated microbial loads in processed foods. 
Thus, Equation A is applied to the subset of campylobacteriosis patients who might benefit 
from an antibiotic, i.e., those with relatively severe cases (Ang and Nachman, 2003; 
httr,://www.cdc.nov/ncidod/dbmd/diseaseinfo/campvlobacter-n.htm); while Equation B 
applies to the wider population of people who eat chicken. 

Some of the parameters in Table 5 are not directly measured, but must be calculated 
from other data elements. Appendix B gives the details of the data and parameter estimate 
calculations and discusses the judgments and assumptions used to select approximate 
uncertainty factors or uncertainty intervals where data are inconclusive. For convenience, 
Table 4 summarizes the main data elements, calculations of parameter point estimates, and 
model results. Table 5 presents a perhaps more logical, simple and uniform format for 
summarizing the key quantities and calculations for decision-makers, as recommended by 
Bailar and Travers, 2002, whereas Table 4 gives greater visibility into the data elements 
and sources used to calculate the quantities in Table 5. 

Together, Tables 4 and 5 illustrate some of the possibilities for rapid, well- 
documented risk assessments made possible by implementing the multiplicative risk 
assessment approach suggested by Bailar and Travers. 2002. 

EXAMPLE RRRT CALCULATIONS FOR COMMENSALS: VIRGINIAMYCIN RISK 

To further illustrate the application of the RRRT risk assessment framework, Table 
6 applies it to estimate human health risks from streptogramin-resistant vanA vancomycin- 
resistant E. faecium (VREF*) due to the continued use of the streptogramin combination 
quinupristin-dalfopristin (QD, marketed as virginiamycin (VM) for animals and as 
SynercidTM for human patients). This application is considered further at the end of the 
Hazard Identification section. Details of the calculations and data are in Cox and Ponken, 

For purposes of illustrating the RRRT approach, the main point is that the 2004. 
calculation of status quo human health risks for commensals and for the at-risk population 
(ICU patients with compromised immune systems) can again be structured as a product of 
a base rate of illnesses with a series of fractions, all of which can either be estimated from 
data or set equal to one as a default upper bound. Table 7, taken from Cox and Popken, 
2004 compares model parameter values in the US and Australia. It also shows the 
probability distributions used to estimate the uncertainty distribution of risk via Monte 
Carlo simulation. The bottom rows of Table 7 indicate how to model a gradual decline 
over time in QD prescription rates as SynercidTM is increasingly replaced with linezolid 
(ZyvoxTM), and a gradual decline in QD resistance in chickens (and, presumably, a 
proportional decline in QD resistance among chicken-borne SREF cases in humans) 
following a withdrawal of virginiamycin. In other words, the multiplicative framework 
need not be confined to comparing pre-intervention and post-intervention steady-state 
equilibria, but can be extended to consider the transient adjustments in factors caused by 
interventions over a time horizon of years or decades. 
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TABLE 6: 
I 

RRRT Estimation of Health Risks from Virginiamyc 
F’REVENTABLEEXPOSURET 

Factor 
Average number of VRE cases/year in KU 
population 

1 RESISTANT BACTE 
US Values 

37,483 

Fraction of VRE cases that are VREF 

Fraction of VREF cases with VanA 
resistance (VREF*) 

Fraction of VREFA cases from food 

Fraction of VREFA cases from food that 
might come from chickens 
Fraction of foodbome VREF* cases that have 
QD-resistance (= SREFA cases) 
Fraction of foodbome SREF, cases with QD- 
resistance caused by QD use in chickens 
Preventable resistance fraction = fraction of 
foodbome SREF* cases that could be 
prevented if QD use in animals ceased 

CONSEQUENCI 
Fraction of SREF, cases not treated 
successfully with linezolid or other non-QD 
antibiotics 
Fraction of SREF* cases not treated 
successfully with linezolid or other non-QD 
antibiotics that are then prescribed QD 
Fraction of SREF, cases prescribed QD that 
fail to respond normally to QD treatment 
Fraction of SREF* cases prescribed QD that 
fail to respond normally to QD treatment 
because qf the QD-resistance 
Increased mortality probability due to QD 
resistance 
Preventable excess mortalities per year = 0.04 = 
37483*0.78*0.79*0.12*0.011*0.17*0.074*0.7*0.15 

0.71, 
0.78, 
0.95, 
Median: 0.78, UF < I .25 
0.73 
0.83 
0.79 
Median: 0.79, UF c 1.1 
5 0.17 = Proportion of 
VREFs that are not of 
known nosocomial origin 
0 to 0.12 based on 
genogroup similarities 
0 to 0.011 

1 (2 

5 1. Cox and Popken, 
2004 estimate 0.68 within 
5 years based on Danish 
experience in chickens 
3 OF QD-RESISTANC 
0.074 = fraction of cases 
for which linezolid 
therapy is not successful 
1 (3 

0.7 

0.15 Linden et al,. 1997 

LO.04 

5 - n Use in Chickens 
:IA VIA FOOD 

Data Sources 
IWIS, 2001 
Lawton et al. 2000 
AHA. 2001 
SNJ, 2000 
Clark et al., 1993 
Rice, 2001 

Eliopoulos et al.. 1998 
Jones et al, 1995 
Clark et al., 1993 

Bischoff et al., 1999; 
Austin et al.. 1999. Thal P.-W.-.- 
et al.. 1998 
Willems et al., 2000 
Willems et al.. 2001 
Eliopoulos et al., 1998, 
Jones et al., 1999 
Upper bound 

Upper bound 

Linden et al-. 2002 

Upper bound 

Upper bound 

Linden et al.. 2002 
Moellering et al.. 1999 

Product of above upper 
bounds 
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Process 

VRE cases/quarter 

Formula (Australia; US) 

Markov Simulation Model; 

Mean Mean 
(Australia) U-JS) 
3.98 9370.65 

Time Independent 
Reductions 
Van A E. faecium prop. 
Exogenous case prop. 
Chicken attribution prop. 
QD resistance prop. 
QD treatment 
effectiveness proportion 
Summary of reductions 
Time Dependent 
Reductions 
QD prescription rate 

Beta( l&65); Uniform( .43,.79) 0.22 0.61 
Uniform(0.089, 0.25) 0.17 0.17 
Beta( 1 I, 78) 0 to 0.12 0 to 0.12 
Beta( 1, 109); p = 6/553 0 to 0.009 0 to 0.011 
N(.705, .0362) + Beta( 1 ,109); 0.714 0.716 
N(.705, .0362) + Bin(6/553) 
Product of above .000029; .OOOl 
(t represents quarters) 

Decrease 15% semiannually 0.922’; 0.922”+(” 

VM resistance reduction in Decreases to 0.32 after 5 years e(-.0570 1) e(-.0570 t) 

chickens after ban 
Source: Cox and Popken, 2004. 

The risk assessment summarized in Table 6 assumes that hospitals with outbreaks of 
nosocomial VREFA or SREFA transmission are approximately equally likely to have them 
whether or not VM is used in chicken (based on empirical evidence that chicken-borne 
infections are at most a relatively minor contributor, reviewed in Cox and Popken, 2004), 
so that only non-nosocomial cases are considered as being potentially preventable by 
reduced VM use in food animals. In contrast to the analysis in Table 7, Table 6 also 
assumes that QD is used to treat a patient with a vanA infection only if other antibiotic 
treatment options, specifically linezolid, prove ineffective. (Since these patients are 
typically seriously ill and carefully screened and monitored, it is much less likely that QD 
would be prescribed to patients with QD-resistant infections than that macrolides would be 
prescribed as empiric treatments for macrolide-resistant C. jejuni cases in Table 4.) With 
these assumptions and the point estimates of model parameters shown in Table 6, an upper- 
bound point estimate for preventable excess mortalities per year from QD use in animals is 
about 0.04 cases per year, or about 1 excess mortality in 25 years. The true number of 
excess deaths could be far smaller (possibly zero), as a number of conservative (risk 
estimate-maximizing) assumptions are included in calculating the 0.04 value in Table 6.) 
These statistical excess deaths occur among seriously ill patients, over 1/3’d of whom are 
expected to die even if there is no resistance. 

By contrast, the human health benefits from continued use of virginiamycin in 
chickens may be comparable in magnitude to those estimated for continued use of 
macrolides in Table 4. VM is effective in reducing the incidence of necrotic enteritis (NE) 
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in chickens. Withdrawing VM may lead to increased NE rates (consistent with experience 
in Europe, where NE rates in chickens experienced a transient surge and new, higher 
endemic levels in several countries following the withdrawal of VM and other antibiotics 
used as animal prophylactics and growth promoters.) Chicken carcasses from NE-positive 
(NE+) flocks are likely to have the same kinds of excess microbial loads observed for 
carcasses from AS+ flocks (Russell, 2003). They may lead to similar excess human 
illnesses, i.e., about 40,458 excess illness days and 39.3 serious C. jejuni illnesses per half 
percent increase in NE+ flocks if virginiamycin were withdrawn, based on the numbers at 
the bottom of Table 4 for airsacculitis. In short, a withdrawal of virginiamycin from use in 
chickens may create substantial adverse human health impacts - possibly greater than those 
estimated here if human health effects of other chicken-borne pathogens (e.g., 
Salomonella) that might be affected by increased NE are considered. Without pursuing the 
benefit calculation further, it seems clear that uncertainty about the extent to which NE 
would increase after a risk management intervention, and the extent to which such an 
increase causes increases in chicken carcass contamination and human illnesses, are worth 
additional empirical investigation. Data from Europe may be valuable for this purpose 
(e.g., Eurosurveillance, 2002). 

METHODS AND DATA FOR RISK ASSESSMENT 

The previous RRRT example calculations have illustrated many of the types of top- 
down calculation methods and data sources used in antimicrobial risk assessment. More 
generally, quantitative risk assessments are often, simplified by applying results from 
probability and statistics. Among the most useful are expressions for the probabilities of 
conjunctions of events as products of marginal and conditional probabilities (extensively 
used in the RRRT approach) and “limit laws” that allow the probability distributions of 
population risks to be closely approximated based on partial knowledge of the probability 
distributions of the factors that contribute to them. For example: 

e Rare events typically obey a Poisson approximation law (e.g., Barbour. 2000) 
l Sums and averages (e.g., total population risks or average individual risks) of independent or 

almost independent variables (e.g., individual risks) ‘typically approach normal distributions in 
large populations. 

l Products and networks of calculations often give results with approximate log-normal 
distributions (Druzdzel. 1994). 

l Extreme values (e.g., maximum or minimum values, record values) from a large popuIation 
usually follow one of three kinds of extreme value distributions. Runs of large or small values 
also follow special distributions. 

0 Deviations around expected values often follow an approximately exponential distribution. 

Such results can allow population risks to be approximated with useful accuracy for large 
populations and complex models even when there is considerable uncertainty about the 
values (or probability distributions) of individual, factors in the models. For further 
discussion, see Appendix A. 
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HAZARD IDENTIFICATION 

Risk assessment begins with hazard ident$cation, which defines the scope of the 
assessment - what specifically will be assessed - and presents evidence that a particular 
activity or source of risk (the hazard) causes harm in exposed individuals or populations. 

DEFINITION OF HAZARD IDENTIFICATION 

Hazard identification for food safety has been defined as “The identification of 
biological, chemical and physical agents capable of causing adverse health effects and 
which may be present in a particular food or group of foods” (Codex Alimentarius 
Commission, http://www.fao.orglD0CREP/005/‘Y2200E/y220, emphasis added). These 
agents, i.e., sources of risk, are called hazards. 

A hazard is thus a potential cause of an adverse human health effect. Examples 
may include food-borne bacteria and resistance determinants transferred from food-borne 
bacteria to other infectious bacteria that cause them not to respond to treatment, creating 
increased days of illness or other clinical harm. Potential adverse human health effects (or 
consequences) of exposures to hazards could include increased frequency, duration, or 
severity of food-borne illnesses, or treatment failures that result in clinical harm (e.g., 
increased duration or severity of illnesses). 

PURPOSES OF HAZARD IDENTIFICATION 

Hazard identification has the following main purposes: 

1. Rapidly screen potential hazards by identifying whether available data support the 
hypothesis that specific adverse health effects might be caused by specific 
exposures or activities. Hazard identification uses methods of causal analysis (e.g., 
Shipley, 2000) to determine whether hypothesized causal relations relating acts to 
exposures to adverse health responses and consequences are consistent with 
available data. 

2. Ident& qualitative or quantitative causal relations between exposures to specific 
food-borne hazards and spectjic adverse human health effects. To support risk 
management decision-making, it is often helpful to identify exposures or hazards 
resulting from controllable decisions or behaviors. 

3. IdentiJL risk factors and exposure conditions that are associated with increased 
risks to specific exposed populations (e.g., the old, the young, the immuno- 
compromised, etc.) 

4. Present and objectively evaluate evidence for and against the hypothesis that 
exposures to specific food-related hazards (resulting from controllable decisions, 
e.g., on use offeed additives) cause speciJic adverse human health effects. This is 
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somewhat analogous to the US EPA’s statement that, for environmental hazards, 
“The objective of hazard identification is to determine whether the available 
scientific data describe a causal relationship between an environmental agent and 
demonstrated injury to human health or the environment” 
(http://www.bethel.edu/-kisrobihon30lWreadinqsirisklRiskEPA/riskepal .html, emphasis added). 

If the hazard is non-zero, what agent should be considered “the cause” of adverse 
consequences - the bacteria involved, the resistance determinants that they carry, failure to 
properly prepare, cook, or handle food to eliminate contamination, or the animal antibiotic 
uses that selects for those determinants ? The answer depends on what risk management 
decision the hazard identification is intended to support. In general, “the cause” of an 
adverse health effect is not uniquely defined, but the predicted effect of a specific 
intervention, holding other conditions fixed, can be quantified. 

DATA USED IN HAZARD IDENTIFICATION 

Objective statistical tests for potential causality between measured exposure and 
response variables can be applied if historical data are available on the timing and/or extent 
of the variables in a population. For example, suppose that historical data are available for 
the following two variables: 

l X = animal antibiotic use in a country or location (perhaps coded so that X(t) = 1 if 
the antibiotic was in use at time t, else 0, or coded so that X(t) indicates the levels of 
use at time t); and 

l Y = resistance rates to analogous human antibiotics in human patients (e.g., from 
surveillance data or epidemiological studies). 

Then X is a potential cause of Y if and only if the history of X up to any date t provides 
information about the future of Y (after date t) that cannot be fully removed by 
conditioning on any other subset of variables known at date t (including the history of Y 
itself up through date t). Whether one variable provides information about another 
(indicated statistically by a non-zero cross-entropy between them, i.e., a reduction in the 
entropy of one after conditioning on the other) and whether this information can be 
removed (“explained away”) by conditioning on other variables can be determined by 
computational statistical algorithms (Frey et al., 2003; Aliferis et al., 2003). 

Categories of objective evidence that are often considered in antimicrobial risk 
assessments include: 
l Spatial associations between animal antibiotic use and resistance levels in human 

patients. Associations between animal antibiotic use and human illness rates may also 
be relevant if the animal antibiotic use affects microbial loads of pathogens reaching 
human via meats. 

* Temporal associations between the date(s) of introduction of an animal antibiotic and 
subsequent changes in animal and human resistance rates (after controlling for 
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contemporaneous changes in other factors and potential confounders, e.g., changes in 
foreign travel). 

* Temporal associations between the date(s) of cessation of an animal antibiotic (e.g., 
following the European bans on growth promoters) and subsequent changes in animal 
and human resistance rates (after controlling for contemporaneous changes in other 
factors, e.g., consumer awareness and education programs, HACCP interventions). 

e Genetic associations between bacteria found in human patients and in food animals that 
may indicate whether they are similar enough so that one might come from the other (or 
whether both might have a common environmental source). Usually, epidemiological 
data are invoked to help interpret and complement genetic similarity data, since genetic 
similarities alone cannot establish a direction of causation. 

l Epidemiological associations between exposures to food animal products and 
incidence rates of foodbome illnesses and/or prevalence rates of resistance in patients, 
after controlling for potential confounders, information biases, and modeling biases. 

Well-developed statistical methods and algorithms are available to identify significant 
statistical associations from such relevant data and to screen them for potential causality 
based on the above information criteria. 

Technical Note: Statistical tests for potential causality. Statistical methods are available to identify 
associations that cannot be “explained away” by conditioning, even in very large data sets (Aliferis. 
2003). These algorithms require tests for conditional independence as sub-routines. Classification tree 
software can be used to perform conditional independence tests for one dependent variable at a time by 
testing whether conditional mutual information is significantly different from zero (Frey et al.. 2003). 
Alternatively, statistical tests of the residuals in flexible nonparametric (“form-fi-ee”) regression models 
(Linton and Gazalo, 1999; Shipley. 2000) can be used to test conditional independence for one dependent 
variable at a time. More computationally-intensive commercial software (e.g., BavesiaLabTM) will 
automatically compute conditional independence relations for entire sets of variables (Tsamardinos et al., 
2003). These algorithms generalize the requirement that, to be considered causal, an exposure-response 
association must not be i%lly explained by confounding (Sonis. 1998; Greenland and Morgenstern, 2001; 
Greenland. 2003) - or, for that matter, by sample selection biases (Mark. 1997), information biases (Grimes 
and Shulz, 2002), or modeling and analysis biases (Cox. 2001). Formal tests for statistically significant 
associations between the timing of one event (e.g., introduction or cessation of animal antibiotic use) and 
subsequent changes in a series of measurements (e.g., human resistance rates in a surveillance program) can 
be based on intervention analysis and change point anaZyses (Green. 1995) for time series. Potential 
causality between two time series of measurements (e.g., usage levels of an animal drug and illness rates or 
resistance rates in human patients) can be based on extensions of Granger-Sims tests (Swanson et al.. 2001) 
that include conditional independence and causal graph tests. These methods represent the current state-of- 
the-art in causality testing. They are entering common biostatistical and risk analysis practice only slowly, 
but have been developed for many decades in other disciplines (Shiulev. 2000). 

DESIRED OUTPUTS OF HAZARD IDENTIFICATION 

A hazard identification for microbial risk assessment should identify the 
microorganism that causes specific diseases or adverse health effects (e.g., using Koch’s 
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postulates), elucidate the infection and disease process (including the conditions under 
which infection and illness occur); identify possible transmission routes (e.g., food, water, 
vectors); and identify covariates (e.g., host immune status, other risk factors) that can 
interact with or affect the relation between exposure and risk (Haas CN, Rose JB, Gerba 
CP. Quantitative Microbial Risk Assessment. Wiley, 1999). A hazard identification for 
antimicrobial risk assessment should also identify the causal relation between use of 
antimicrobial drugs in animal feed additives and the levels of resistant pathogens in human 
patients, as we11 as the causal relation between these levels and the frequency and 
magnitude of increased mortality risks, morbidity risks, and treatment failure rates. 

If objective statistical tests for hazard identification do not identify a causal relation 
between decisions, exposures, and human health risks, then this result should be stated, 
along with discussion of the statistical power of the tests used for the data examined. In 
this case, risk assessment can still be carried out, but it becomes contingent on the 
assumption that a risk exists. Such a contingent risk analysis can be useful if it shows that 
risks are small, by providing a plausible upper bound on the true (conjectured but perhaps 
non-existent) risk. But it may not be useful for accomplishing other risk analysis goals, 
such as guiding rational choice among expensive risk management alternatives. 

EXAMPLES OF HAZARD IDENTIFICATION 

Example I: Sources of antibiotic-resistant E. fuecium 

It is an a priori plausible hypothesis that antibiotic-resistant E. faecium isoIated from 
human patients might originate in antibiotic-treated food animals that carry E. ,faecium (Weprener et 

The hazard identification step of the risk assessment process rigorously tests and al., 199-g). 
evaluates such hypotheses using data. It may also use epidemiological, time series, genotype, 
phenotypic biomarker, and other mechanistic data to investigate sources of exposure to microbial 
hazards (e.g., antibiotic-resistant E. faecium) even without any apriori hypotheses. 

How can microbiological hazard identification methods be applied to identify sources of 
antibiotic-resistant E. faecium ? One approach is to compare resistance phenotypes in isolates from 
different sources. This is illustrated by a study of Iversen et al. (2004): 

“An ampicillin- and ciprofloxacin-resistant Enterococcus faecium (ARE) strain, named FMSEI , with a 
characteristic biochemical phenotype, was in a recent study found to dominate among faecal ARE 
isolates from patients in several Swedish hospitals. In the present study, the prevalence of this strain 
among 9676 enterococcal isolates from healthy children, hospital sewage, urban sewage, surface water, 
slaughtered animals (broilers, pigs and cattle) and pig faeces and manure was investigated. Enterococcal 
isolates having the same biochemical phenotype as the FMSEI were most common in samples of 
hospital sewage (50%), surface water (35%), treated sewage (28%) and untreated sewage (17%), but rare 
in samples Corn healthy children (0.8%) and animals (2%). PFGE typing of FMSEl-like isolates from 
hospital sewage indicated that they were closely related to the nosocomial FMSEl strain. Thus, this study 
indicated a possrble transmission route for nosocomial E: faecium from patients in hospitals to hospital 
sewage and urban sewage, and further via treatment plants to surface water and possibly back to humans. 
This proposed route of circulation of drug-resistant enterococci might be further amplified by antibiotic 
usage in human medicine. In contrast, such transmission. from food animals seems to play a negligible 
role in Sweden.” 
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Such studies can help to identify hazards that were not necessarily expected a priori. Conversely, 
as in this case, they can help show the extent to which potential hazards that might seem plausible 
in the absence of data, such as the foodbome transmission pathway, make a significant contribution 
to human illness in reality. The conclusion from this study that “transmission from food animals seems 
to play a negligible role in Sweden” might not have been anticipated in the absence of data-driven 
hazard identification, as many scientists have taken as axiomatic the assumption that foodbome 
transmission plays a major or predominant role in human resistant illnesses (e.g., FAAIR, 2002; 
Wegener, 2003). 

Example 2: Potential human health hazard from an existing animal antibiotic use - Tylosin 

The macrolide Tylosin is used in soluble and premix formulations in chickens to 
prevent and control several bacterial diseases and to promote health and growth. Tylosin use 
in chickens can potentially affect human health by changing microbial loads on chicken 
products and/or by selecting for macrolide-resistant pathogens and commensals reaching 
people on food commodities. Food-borne bacterial pathogens found in chicken that are of 
specific concern as potential hazards to human health are C. &$mi and C. coli, both of which 
are found in live broilers (Wedderkopr, et al., 2003), chicken carcasses, and retail chicken 
products (Ge et al.. 2003; Musgrove et al.? 2003). Diagnosed cases of severe 
campylobacteriosis in humans may be treated with erythromycin or other macrolides. In 
addition, if tylosin use in chickens selects for macrolide-resistant E. faecium that are also 
streptogramin A-resistant, then these multi-drug resistant E. faecium might increase the risk 
from serious infections in patients with compromised immune systems. Finally, the potential 
for induction, selection, and transfer of resistance determinants to other bacteria that infect 
humans must be assessed. 

Although macrolides are important antibiotics in human medicine, this is relevant for risk 
assessment of tylosin use in chickens only to the extent that such use reduces the effectiveness of 
macrolides used in human medicine. A human health risk exists only to the extent that there is 
potential to cause harm to human health, and not simply as a result of macrolides being important in 
human medicine. The human health risk from tylosin use in chickens may be defined as the 
expected number of additional illness cases per year (for population risks) and per capita-year (for 
individual risks) in each illness severity class (mild, moderate, severe, fatal) caused by tylosin use 
in chickens, along with the resulting annual frequency distribution of consequence severities, i.e., 
excess annual illness-days and quality-adjusted life years lost in each severity class. Unless this 
number is positive for one or more severity classes, the hazard is zero. 

A current clinical perspective on the treatment of C. jejuni infections is as follows: 

“Most C. &#ni infections are mild and self-limited; therefore, they do not usually require antibiotic 
therapy. Correction of electrolyte abnormalities and rehydration are usually sufficient. Treatment often is 
reserved for compromised hosts or persons with fever, increasing bloody diarrhea, or symptoms that last 
longer than 1 week. C jejuni is usually sensitive to erythromycin, gentamicin, tetracycline, ciprofloxacin, 
and clindamycin. Reports of erytbromycin- and ciprofloxacin-resistant strains are increasing. In adults, 
placebo-controlled studies of erytbromycin demonstrate no improvement in the clinical symptoms if given 
late in the course of illness but have resulted in decreased fecal shedding. If an appropriate antibiotic 
therapy was initiated within the first 4 days of illness, there was a reduction in the excretion of the 
organism; however, results regarding the resolution of symptoms were controversial. In contrast, early 
erytbromycin treatment for children with bloody diarrhea shortened both the duration of diarrhea and 
excretion of microbes in the stool. Recommended duration for antibiotic treatment given for gastroenteritis 
is 5-7 days. Antimicrobial therapy for all bacteremic and immunocompromised patients with C jejuni 
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should be selected based on a laboratory susceptibility test. Begin therapy with gentamicin, imipenem, 
third-generation cephalosporins, or chloramphenicol until susceptrbility test results are available” (a 
and Nachman. 2003) 

This perspective is consistent with clinical experience gathered over the past twenty years. For 
example, on the issue of clinical effectiveness, despite some initial promising reports on the 
efficacy of erythromycin in shortening the duration of C. jejuni campylobacteriosis (Nolan et al., 
m), others soon found that “Although erythromycin significantly shortened the duration of C 
jejuni excretion, it appeared to exert no effect on the clinical course of the illness” (Robins-Browne 
et al. (1983); see also Anders et al., (1982)). When investigators focused specifically on early 
treatment, they still found that that “Erythromycin rapidly eliminated C. jejuni from [human] 
stools. . . . Despite its bacteriologic effectiveness, erythromycin did not reduce the duration or 
severity of diarrhea, abdominal pain, or other symptoms” (warns et al. 1989). 

Since macrolides (e.g., erythromycin or azithromycin) are not drugs of first (or second or 
third) choice for high-risk patients, have limited or no ,clear clinical benefits in adults, and have 
many alternative products available, it might at first seem that their overall importance in human 
medicine for treating C. jejuni infections is very limited. However, if macrolides do after all have 
some (perhaps currently unrecognized) clinical benefits in treating C. jejuni cases, then animal uses 
that select for resistant strains may cause some or all of those benefits to be lost. Concern that this 
could be the case has driven risk management recommendations that animal antibiotic use be 
terminated. However, such recommendations have not been based on formal risk assessment or 
hazard identification showing that macrolide use in chickens explains part of the observed 
resistance patterns in human patients. 

As discussed further in Apnendix B, recent historical data that could potentially have 
provided evidence of a causal relation between macrolide use in food animals and macrolide 
resistance rates in human patients instead produced some surprising findings. Specifically, the 
European ban on macrolides and other antibiotics used :as prophylactics and growth promoters in 
animals (including Tylosin) was followed by unexpected increases in macrolide resistance rates in 
humans as well as in rates of foodbome illnesses in Denmark and some other countries (Hayes and 
Jensen, 2003), contrasting with previous expectations and opinions (e.g., Wegener et al.. 1999; 
Wegener, 2003). No cause-and-effect relation, has yet been established, and the matter is politically 
and scientifically controversial. In the absence of formal hazard identification and causal analysis 
of the data, competing explanations have been proposed, e.g., that the bans led to increased 
therapeutic use (although to decreased total animal use) of macrolides; that food imports may 
account for increasing shares of observed illnesses; or that the bans increased animal and human 
illnesses and hence increased human antibiotic use and resulting antibiotic resistance in humans. 
Further examination of the European post-ban experience may produce additional valuable 
information on causal relations, and policy-makers may take advantage of this information and of 
hazard identification methods in determining whether such bans actually cause the human health 
benefits that they are intended to achieve. 

Example 3: Potential human health hazard from an existing animal antibiotic use - 
Virginiamycin 

E. faecium are commensal bacteria, commonly’ found in the intestines of humans and of 
food animals such as chickens, pigs, and cattle. Competent immune systems protect most people 
from E. fuecium infections. However, patients with compromised immune systems, such as 
leukemia, chemotherapy, transplant, and AIDS patients, can develop life-threatening E. fiecium 
infections unless these bacteria can be controlled successfully with antibiotics. Infections typically 
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occur in intensive care unit (KU) patients, usually via nosocomial transmission. Vancomycin is 
the antibiotic most frequently prescribed to treat E. faecium infections, but may be ineffective 
against E. fuecium that express resistance genes. Other antibiotics such as linezolid, daptomycin, 
and quinupristin-dalfopristin, which are usually highly effecive against vancomycin-resistant E. 

faecium (VREF), may then become important treatment options (Critchlev et al.. 2003). Less 
effective bacteriostatic agents (e.g., chloramphenicol) are also available, and new antibiotics for 
treatment of vancomycin-resistant cases (e.g., oritavancin, a glycopeptide, and tigilcycline, a novel 
analogue of minocycline) are in trial (Linden. 2002). 

A current clinical perspective on VREF infections and resistance is as follows: 

“The acquisition of vancomycin resistance by enterococci has had serious implications for the treatment 
and infection control of these organisms. Vancomycin-resistant enterococci (VRE), particularly E faecium 
strains [VREF], are frequently resistant to all antibiotics that are effective treatment for vancomycin- 
susceptible enterococci, which leaves clinicians treating VRE infections with either suboptimal 
bacteriostatic agents (eg, chloramphenicol) or with no therapeutic options. Recently, 2 new types of 
antibiotics (quinupristin/dalfopristin, linezolid) with activity against many VRE strains have improved this 
situation, but resistance to both of these agents has already been described. . . . Five phenotypes of 
vancomycin resistance, termed VanA, VanB, VanC, VanD, and VanE, are described. The VanA and VarB 
phenotypes are clinically significant and mediated by l-2 acquired, transferable operons consisting of 7 
genes in 2 clusters termed VANA and VANB operons. . ..In the United States and Europe, the VanA- 
resistance phenotype is reported as the most common phenotype. VanA enterococcal isolates exhibit high- 
level resistance to both vancomycin and teicoplanin, while VanB isolates have variable resistance to 
vancomycin and remain susceptible to teicopianin. . . .Enterococcal infections often occur in debilitated 
patients and as part of polymicrobial infections. These factors limit the ability of investigators to determine 
the independent contribution of enterococcal infections to mortality and morbidity. . . .Enterococcal 
infections are more common in elderly patients because of various associated factors that are more common 
in these patients. _ _ .The streptogramin combination antibiotic, quinupristin/dalfopristin, is available 
intravenously for the treatment of E faecium infections, but it is not effective against E faecalis strains. 
Linezolid, an oxazolidinone antibiotic, is available orally and intravenously, and it is used to treat 
infections caused by E faecium and E faecalis strains. . . .Once VRE is identified in a medical facility, all 
clinical enterococcal isolates should be tested for vancomycin resistance.” (Donskev and Salata. 2003) 

Thus, either the streptogramin combination quinupristin-dalfopristin (QD) or linezolid can 
potentially be used to treat vancomycin-resistant E. faecium (VREF) infections. However, suppose 
that use of QD (formulated as virginiamycin) in food animals were to increase streptogramin- 
resistant E. faecium (SREF) among VREF in meat products, and hence increase QD-resistant VREF 
infections in immunocompromised patients, perhaps following inadequate cooking of hospital food. 
Then more of these patients might have to be treated with alternatives such as linezolid or 
daptomycin instead of with QD. Since linezolid is usually less harsh and at least as effective as 
QD, this is not necessarily undesirabIe. However, for patients who do not respond favorably to 
linezolid - approximately 7.4% of VRE patients in a study by Linden et al, 1997 - or to other 
therapies such as daptomycin, QD may become the treatment of last resort. QD resistance may 
then increase the probability of QD treatment failure. Therefore, if QD use in food animals 
increases the rate of QD-resistant VREF infections in ICU patients, it might also increase the 
number of cases per year not treated effectively by any currently available antibiotics, leading to 
excess mortalities. Quantitative risk assessment is needed to determine how large this number is. 
As discussed in Example 1 above, identifying an u priori plausible causal pathway, such as the 
foodbome one just described, that might lead from an activity (QD use in food animals) to an 
adverse human health effect (increased treatment failures among QD-treated patients), does not by 
itself constitute an adequate hazard identification. Rather, such hypothesized causal pathways must 
be tested against available data (Shipley. 2000). When data are not adequate to permit such testing 
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of causal hypotheses, they may be identified as potentid hazards (not known to be false), and risk 
assessment can then be carried out contingent on the assumption that the conjectured hazards are 
real, to obtain upper bounds on the true but unknown risks (Cox and Popken. 2004). 
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EXPOSURE ASSESSMENT 

DEFINITlON OF EXPOSURE ASSESSMENT 

Exposure assessment has been defined as “the qualitative and/or quantitative 
evaluation of the degree of intake likely to occur” (Joint Expert Consultation of the 
FAO/WHO, http://www.foodriskclearin~house.umd.edu/pversioniexposure.htm, emphasis added). In terms 
of the causal chain: 

act + Aexposure -+ Aillnesses t covariates, 

exposure assessment describes the act --+ Aexposure link. It provides qualitative or 
quantitative summaries of the population exposures to microbial loads (resistant, 
susceptible, or both) for different risk management decisions. Exposures for individuals in 
the population can be expressed in units of frequency and magnitude of CFUs, or colony- 
forming units, ingested via food, water, from contaminated hands, and via other pathways. 
For populations, exposure refers to the frequency distribution of individuaZ exposures 
(microbial loads) consumed per unit time. 

The US FDA has defined exposure assessment as “A component of a risk 
assessment that characterizes the source and magnitude of human exposure to the 
pathogen”. The magnitude of human exposure, also called the dose, is defined as “The 
amount or number of a pathogen that is ingested or interacts with an organism (host)” 
(http://www.foodsafetv.~ov/-dmslImriskel.html). This is roughly analogous to concepts used in 
environmental risk assessment. For example, US EPA experts have stated that “Questions 
raised in the exposure analysis concern the likely sources of the pollutant. . . its 
concentration at the source, its pathways (air, water, food) from the source to target 
populations, and actual levels impacting target organisms.” 
(http://www.bethel.edu/-kisrobihon301 klreadingsirisWRiskEPA/riskepaI .html). 

Consideration of the amount of contamination (i.e., the frequency distribution of 
microbial loads) ingested by individuals is crucial for quantifying risk. This reflects the 
fundamental principle that “the dose makes the poison”. However, in practice, it is quite 
common for the microbial loads received to be very uncertain, especially if they depend on 
unmeasured and/or highly variable processes such as cooking of food, cross-contamination 
of other foods in the kitchen, or transfer from contaminated surfaces to skin to ingestion. 
In such cases, the exposure assessment diagram may look like this: 

act --+ exposures -+ illnesses t individual covariates 
-1 

measured exposure surrogates 

Available data may consist of surrogate measurements (e.g., microbial concentrations in 
carcass rinses at retail, or on swabbed surfaces) rather than direct measurements of the 
ingested microbial loads that cause infection or illness. Exposure assessment with 
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surrogate exposure measurements consists of estimating how the underlying true exposures 
will change if different risk management actions are taken, while subsequent exposure- 
response modeling must focus on how health risks will change when true exposures are 
changed by decisions. True exposures then play ‘the role of latent variables in causal 
modeling. Appropriate statistical techniques for inferring the relation between decisions 
and true exposures can still be applied using the above modified diagram with surrogate 
measurements of exposure for data. Software such as WinBUGS helps to automate the 
required computations for inference with missing data and surrogate variables. 

In summary, exposure may be defined as the number of servings containing 
potentially infectious doses of the bacterium of concern ingested per year (for population 
exposure) or per capita-year (for individual exposure). A “potentially infectious dose” is 
any dose large enough to infect a susceptible consumer. It may be as small as one CFU, if 
that is biologically realistic. If reliable dose-response information shows that the risk of 
illness below some number of ingested CFUs is negligible [or, more precisely, is small 
enough so that it can be ignored without changing the expected number of illnesses per 
year (within the limits of rounding error)], then a “practical threshold” - meaning one that 
leads to numerically accurate risk calculations - may be used, even if, in principle, no true 
biological threshold exists. The number of servings,per year ingested with microbial loads 
above the practical threshold then defines total annual exposure. 

PURPOSES OF EXPOSURE ASSESSMENT 

Exposure assessment has the following goals: 
l Identify exposed sub-populations at risk of infection and illness 
l Identify conditions leading to high-risk exposures 
l Describe the extent of exposures (= frequency and magnitude of individual 

exposure in the population in relation to susceptibility/covariates) 
l Predict how risk management decision options will affect exposure distribution 

DESIRED OUTPUTS OF EXPOSURE ASSESSMENT 

A successful exposure assessment describes the frequency distribution of 
potentially infective microbial loads in exposed populations and sub-populations. It shows 
how these distributions change for different risk management decisions. The descriptions 
may be qualitative or quantitative, but they should contain enough variety to indicate any 
significant differences in microbial load distributions for different decisions. 

EXAMPLES OF EXPOSURE ASSESSMENT IN THE RRRT FRAMEWORK 

The top portions of Tables 4 and 5 illustrate how exposure cahzulations are 
performed within the RRRT framework. In both tables, the product of the first 8 factors 
gives an estimate of the potentially preventable resistant illnesses per year caused by 
current animal antibiotic use. 
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EXPOSURE-RESPONSE AND DOSE-RESPONSE MODELING 

DEFINITION OF EXPOSURE-RESPONSE MODELING 

Following the National Academy of Sciences framework for risk analysis, the US 
FDA, CDC and USDA defined dose-response assessment as “The determination of the 
relationship between the magnitude of exposure and the magnitude and/or frequency of 
adverse effects” (http:l/www.foodsafetv.nov/-dms/lmriskgl.html). The Codex Alimentarius 
Commission states that “For biological or physical agents, a dose-response assessment 
should be performed if the data are obtainable.” 

PURPOSES OF EXPOSURE-RESPONSE MODELING 

Dose-response modeling, or exposure-response modeling, describes the causal 
relation between exposures received and the frequency and severity of adverse 
consequences, including infection, illness-days, and death. In terms of the causal chain: 

act -3 exposures -+ illnesses t covariates, 

exposure-response modeling describes the “exposures --+ illnesses” link. 

Multivaviate dose-response models allow individual susceptibility and other 
covariates, as well as exposures, to be included explicitly in the calculation of adverse 
effect probabilities, i.e., they describe the conditional probability of adverse effects (both 
frequency and severity) for different exposures in different subpopulations, described by 
different combinations of age, sex, health status, or other covariates. Multivariate dose- 
response models quantify the following sub-diagram: 

exposures -3 illnesses t covariates 

At present, univariate dose-response models are more commonly used in microbial risk 
assessment and antimicrobial risk assessment. 

DESIRED OUTPUTS OF EXPOSURE-RESPONSE MODELING 

A successful quantitative exposure-response model provides a mathematical 
function relating exposure levels (and possibly other covariates) to probabilities of adverse 
consequences. These probabilities may also be expressed in units of conditional expected 
frequencies, or rates per unit time, of specified adverse effects for exposed individuals. 
Confidence bands should be used to express uncertainties about consequence probabilities 
or rates at different exposure levels. Dose-response relations and their confidence bands 
may be presented for individuals in different identified subpopulations, e.g., those with 
special sensitivity or susceptibility, as well as for a randomly sampled individual. 

53 



Technical Note Classification trees for muftivaviate dose-response modelirzg: If it is desired to create a 
simple qualitative exposure-response model, then decision tree algorithms can be used to automatically bin 
more detailed exposure-response data into a few aggregate exposure intervals (or combinations of intervals, if 
there are multiple risk factors in a muhivariate exposure-response model) that predict similar response levels. 
(See e.g., Zhang H, Singer B. Recursive Partitioning in the Health Sciences. New York: Springer; 1999.) 
Such approximate exposure-response relations can be smoothed in a number of ways to reconstruct simple, 
approximate exposure-response functions and confidence intervals directly from detailed exposure-response 
data (http:Jluu?N.stat.wisc.edu/p/sta~~J~ubJlo~tree~rogs/g~es.~df ). These techniques, while 
increasingly familiar and well-developed in biostatistics, are not yet commonly used in antimicrobial risk 
assessment. 

EXAMPLES OF DOSE-RESPONSE MODELS 

Appendix B presents several examples of dose-response models for C. jejuni. They 
differ primarily in their assumptions about inter-individual heterogeneity in individual 
dose-response parameters and in their assumptions about whether observed population 
illness rates are driven more by differences in individual exposures or by differences in 
individual susceptibilities to exposures. Based on these differences, the dose-response 
models considered (the Beta-Poisson, which allows for interindividual heterogeneity in 
response parameters, a log-exponential model suggested by CVM, and a linear no- 
threshold model) give very different predictions for the effects of a change in the frequency 
distribution of microbial loads per C. jejuni-contaminated serving of chicken consumed, 
leading to an 42-fold variation (from 0.3 to 13.9) for the dose-response ratio factor near the 
bottom of Table 4. In general, uncertainties about dose-response relations can often 
introduce several orders of magnitude of uncertainty into predictions about the probable 
human health effects of risk management interventions that affect microbial loads reaching 
consumers. 



RISK CHARACTERIZATION 

DEFINITION OF RISK CHARACTERIZATION 

Risk characterization integrates hazard identification, exposure assessment, and 
dose-response information to determine the probable frequency and severity of adverse 
health effects that exposure to a hazard causes in a population For example, the Joint 
FAO/WHO Expert Consultation defines risk characterization as the “integration of hazard 
identification, hazard characterization [i.e., dose-response or exposure-response relation] 
and exposure assessment into an estimation of the adverse effects likely to occur in a given 
population, including attendant uncertainties”. The US FDA has used this definition in 
microbial risk assessment (http://www.foodsafety.gov/-dms/lmrisk~l.html). 

PURPOSES OF RISK CHARACTERIZATION 

Risk characterization is intended to show the predicted probable frequency and 
severity of adverse human health consequences (and other adverse effects of concern) for 
different risk management decisions. It presents expected impacts and confidence intervals 
for the number and severity of adverse outcomes per capita and per unit time. Thus, risk 
characterization relates decisions to their probable consequences in order to guide and 
inform improved risk-management decision-making. 

DESIRED OUTPUTS OF RISK CHARACTERIZATION 

A successful risk characterization describes the spectrum of health outcomes and 
the occurrence of the microorganism and/or resistance determinants of concern (based on 
the hazard identification step); the frequency distribution of exposures in the population 
(with confidence limits) for different decisions; the confidence limits for the dose-response 
model; and the confidence limits for the predicted frequency and severity of adverse effects 
for different risk management decisions (Haas et al., 1999). 

The outputs from risk characterization should include: 
l Expected risk metrics (i.e., expected number of infections, illnesses of specified 

severity levels, mortalities, treatment failures, etc.) per year and in a lifetime for a 
randomly selected member of the population; 

l Confidence intervals around the expected risk for a randomly selected individual; 
l Expected risks and confidence intervals for members of identified sensitive sub- 

populations and highly exposed sub-populations; 
l Expected numbers and confidence intervals for total infections and illnesses with 

different levels of severity, per year, per capita-year, and per capita-lifetime in the 
total population and in identified sub-populations. 

These individual risk and population risk metrics should be provided for each risk 
management decision being considered. 
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CAVEATS ON RISK CHARACTERIZATION FOR RISK MANAGEMENT 

Many antimicrobial risk assessments to date have ignored the human health risks 
that risk management intervention might create, focusing instead entirely only on the 
human health risks that they might reduce or prevent, This represents a breakdown in 
sound risk assessment and risk management, on a par with assessing financial risks of an 
investment or acquisition based on only one side of a balance sheet. 

In general, rational risk management requires considering and comparing the total 
human health consequences, both favorable and adverse, of the risk management decision 
options being evaluated. Risk characterization ,owes to risk managers a complete 
accounting of the illnesses or adverse human health effects (and other adverse 
consequences of interest for decision-making) that a risk management intervention might 
cause, as well as of those that it might prevent. As illustrated in Table 4 and Table 5, the 
same basic format and logic (multiplicative modeling) can be used to do both. 

Similarly, risk management decision processes that map perceptions or data about 
the current situation directly to recommended actions or interventions without first 
explicitly identifying the probable human health consequences of the recommended actions 
or comparing the probable consequences of alternative decision options are prescriptively 
unsound. They violate important normative principles of rational and effective decision- 
making, i.e., decision-making designed to bring about desired consequences- This failure 
to follow the requirements of consequence-driven decision making is a potentially 
important limitation of approaches such as CVM’s Guidance # 152, which proceeds 
directly from judgments about risks (or about poor surrogates for components of risk, such 
as the judged importance of classes of compounds in human medicine, which presumably 
would not be changed by any decisions that might be taken) to recommended risk 
management decision options, but without identifying or comparing their probable human 
health consequences. 

A superior approach, according to the most widely accepted principles of decision 
science (e.g., Cox. 2001, Chaptesr 5-7) is to use quantitative risk assessment information 
about the probable consequences of alternative interventions to eliminate dominated 
options and to choose the best from among those that remain. 

EXAMPLES OF RISK CHARACTERIZATION USING UPPER BOUNDS 

The Consequence portions of Tables 4 and 6 ilIustrate risk characterizations based 
on plausible upper bounds calculated within the RRRT framework. In both tables, the 
product of the preceding factors gives an estimate of the potentially preventable adverse 
human health consequences per year caused by current animal antibiotic use. 
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UNCERTAINTY AND SENSITIVITY ANALYSIS 

DEFINITION OF UNCERTAINTY AND SENSITIVITY ANALYSIS 

Uncertainty analysis describes both the uncertainty in estimated risks (e.g., the 
extent to which confidence intervals could potentially be narrowed by collecting more data) 
and also the variability in risk estimates, based on differences in individual exposure and 
response parameters. Uncertainty can be eliminated, at least in principle, by larger sample 
sizes and better information, whereas variability cannot be reduced no matter how much 
additional information is collected. 

Sensitivity analysis identifies the inputs to a risk characterization that most affect 
the widths of confidence intervals for risks. Quantitative sensitivity analyses show how risk 
estimates (point estimates and confidence intervals) and recommended risk management 
decisions change as inputs are varied and as uncertainties in the input are reduced. 

PURPOSES OF UNCERTAINTY AND SENSITIVITY ANALYSIS 

Uncertainty and sensitivity analyses indicate the potential for conclusions about 
risks (including their uncertainties) to change as additional information is collected. The 
potential for change indicates how certain and robust are risk estimates and risk 
management decisions based on currently available information. Showing the potential for 
change if more information is obtained can provide affected stakeholders with a desirable 
incentive to collect additional relevant information in order to change current risk estimates 
and risk management decisions. 

DESIRED OUTPUTS OF UNCERTAINTY AND SENSITIVITY ANALYSIS 

Uncertainty analysis provides confidence intervals around risk estimates. 
Sensitivity analyses show how risk estimates and confidence interval widths are expected 
to vary as inputs are changed and as uncertainties (e.g., confidence interval widths) for 
inputs are reduced. Sensitivity analysis also shows how model results and predictions 
change if different plausible modeling assumptions are made. It is important to include the 
impacts of such modeling uncertainties, as well as of data uncertainties and sampling 
errors, in any complete uncertainty analysis. Technical methods for displaying the results 
of sensitivity analyses (e.g., tornado diagrams, spider diagrams) have been developed in the 
decision and risk analysis literatures and are appropriate to include in technical discussions 
and presentations of risk analysis results. 

The output of a quantitative uncertainty analysis is a joint posterior probability 
distribution for model quantities and predictions after conditioning on observed data (and 
on modeling assumptions and uncertainties). These can be displayed as joint confidence 
regions for model parameters or predictions. 
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EXAMPLE OF AN UNCERTAINTY ANALYSIS OUTPUT 

To illustrate one of the key concepts of uncertainty analysis, the following figure 
displays the uncertainty in a risk estimate calculated using the RRRT formula: 

RISK = Exposure * Dose-Response * Consequence 

where RISK is measured in expected number of excess illness-days per year, Exposure is 
measured in potentially infectious meals ingested per year in a population, Dose-Response 
= expected number of illnesses caused per potentially infectious meal ingested, and 
Consequence is measured in illness-days caused per illness. For purposes of illustration, 
the point estimates are taken to have median values of: Exposure = 100, Dose-Response = 
0.2, and Consequence = 6 days. To express uncertainty, Exposure is modeled as a log- 
normal distributions with a geometric standard deviations of 1.4; Dose-Response is 
modeled as a Bernoulli random variable having value of 1 with probability 0.2 (for 
“susceptible” members of the exposed population) and a value of 0 otherwise (and hence a 
mean value of 0.2); and Consequence is modeled as a normally-distributed random variable 
with mean of 6 days and standard deviation of 2 days. The curve is a cumulative 
probability distribution for RISK, given these uncertain estimates of Exposure, Dose- 
Response, and Consequence. It was generated via using the AnalyticaTM Monte Carlo 
uncertainty analysis software (http:Nwww.lumina.com/). 

0 lb 3b 4i 60 
RISK 
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RISK MANAGEMENT 

DEFINITION OF RISK MANAGEMENT 

Formal risk management is a decision process that maps available information from 
risk assessment about the probable consequences of acts into choices of which acts to take. 
Acts available to risk management decision-makers usually include collecting additional 
information to reduce uncertainty about exposures and risks, as well as opportunities to 
disseminate existing information and warnings and to require or constrain activities by 
private agents. 

Risk management decision models can be used to quantify the expected value of 
additional information for improving decision-making, and hence can help to set research 
priorities. They also prescribe interim decisions to be made unless and until additional 
information becomes available. 

PURPOSES OF RISK MANAGEMENT 

Risk management decision processes and institutions are used to prevent, mitigate, 
transfer, share, and spread risk and to assign liability and compensate victims of risks. 
Common options for risk management include the following: 

l Warn: Inform or warn potential participants about risks of activities and transactions. For 
example, putting warning labels on food products may help consumers take sufficient care 
to avoid risky preparation or consumption practices. 

l Facilitate voluntary risk management agreements by verifying and publicizing relevant risk 
information and specifying no-agreement outcomes. 

* Provide insurance: Underwrite health care costs for specific illnesses to mitigate the 
financial component of losses. 

l Regulate: Restrict voluntary activities or transactions (e.g., production, sale, or use of 
antimicrobial feed additives or other animal antibiotic uses) by imposing constraints, 
standards, and regulatory requirements based on risk information. 

* Use litigation and process design: Design and enforce processes and rules (e.g., tort 
liability rules, inspection and labeling or licensing programs, workers’ compensation) 

* Cornpensa te: Compensate known or suspected victims of hazardous activities, or force 
others (e.g., their known or suspected injurers, or tax payers) to pay compensation. 

CAVEATS ON RISK CHARACTERIZATION FOR RISK MANAGEMENT 

Because the following points are so important for many real-world applications, we 
repeat here the same warnings given at the end of the Risk Characterization section. 
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Many antimicrobial risk assessments to date have ignored the human health risks 
that risk management intervention might create, focusing instead entirely only on the 
human health risks that they might reduce or prevent. This represents a breakdown in 
sound risk assessment and risk management, on a par with assessing financial risks of an 
investment or acquisition based on only one side of a balance sheet. 

In general, rational risk management requires considering and comparing the tota 
human health consequences, both favorable and adverse, of the risk management decision 
options being evaluated. Risk characterization owes to risk managers a complete 
accounting of the illnesses or adverse human health effects (and other adverse 
consequences of interest for decision-making) that a risk management intervention might 
cause, as well as of those that it might prevent. As illustrated in Table 4 and Table 5, the 
same basic format and logic (multiplicative modeling) can be used to do both. 

Similarly, risk management decision processes that map perceptions or data about 
the current situation directly to recommended actions or interventions without first 
explicitly identifying the probable human health consequences of the recommended actions 
or comparing the probable consequences of alternative decision options are prescriptively 
unsound. They violate important normative principles of rational and effective decision- 
making, i.e., decision-making designed to bring about desired consequences. This failure 
to follow the requirements of consequence-driven decision making is a potentially 
important limitation of approaches such as CVM’s Guidance # 152, which proceeds 
directly from judgments about risks (or about poor surrogates for components of risk, such 
as the judged importance of classes of compounds in human medicine, which presumably 
would not be changed by any decisions that might be taken) to recommended risk 
management decision options, but without identifying or comparing their probable human 
health consequences. 

A superior approach, according to the most widely accepted principles of decision 
science (see e.g., Cox, 2001, Chaptesr 5-7 for an in-depth review for risk analysts) is to use 
quantitative risk assessment information about the’ probable consequences of alternative 
interventions to eliminate dominated options and to choose the best from among those that 
remain. 

60 



RISK COMMUNICATION 

DEFINITION OF RISK COMMUNICATION 

Risk communication facilitates the effective participation and interaction of 
technical experts, stakeholders, and decision-makers in risk management decision 
processes and deliberations. Risk communication is also used to present the results of risk 
analyses to affected stakeholders, decision-makers, participants, and other audiences 
(httn://WWW.foodsafetvnetwork.ca/risk.htm#communication). Communication and deliberation drive 
much of the risk management decision process in many cultures and are essential for 
SUCCeSSid OUtCOmeS (http://www.belleonline.com/oct_02.pdf). 

Communication of risk analysis results typically consists of the following steps: (a) 
Identify the goals and definitions of success for the risk communication effort 
(http://www.sirc.or~/publiMrevised~~uidelines.sht~nl); (b) Select messages to be communicated 
to/discussed with each audience to achieve the goals; (c) Select framing, presentation 
media, displays, exhibits, interaction styles and formats, and a script for presenting the 
messages; (d) Implement the risk communication plan; and (e) Monitor results and 
incorporate feedback about the effects of the communication into a revised plan. 

PURPOSES OF RISK COMMUNICATION 

The most common goals for risk communication programs are informing 
individuals and groups about risks so that they can make better-informed decisions or seek 
more information; injZuencing people to change their behaviors, their attitudes and beliefs 
about hazards, and their acceptance of risk management decisions and policy 
recommendations; involving affected parties in the decision process; and facilitating their 
participation in conflict-resolution, consensus-building, and collective decision-making 
about risk management. The field of risk communication provides guidelines, derived 
mainly from experience, analysis of survey data, and experiments, for how to accomplish 
these goals by sharing risk information among stakeholders and decision-makers. 

OIE (http://www.oie.int/eng/publicat/rt/2003NOSE.PDF, Rev xi. tech. OK int 
Epiz., 20 (3) ) states that “The goals of risk communication are the following: 

l to promote awareness and understanding of the specific issues under consideration 
during the risk analysis process, by all participants 

l to promote consistency and transparency in arriving at and implementing risk 
management decisions 

l to provide a sound basis for understanding the risk management decisions proposed 
or implemented 

l to improve the overall effectiveness and efficiency of the risk analysis process 
l to strengthen working relationships and mutual respect among all participants 
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* to promote the appropriate involvement of all stakeholders in the risk 
communication process 

l to exchange information on the knowledge, attitudes, values, practices and 
perceptions of stakeholders concerning the risks in question.” 

There is a tension in many risk communication efforts between informing and in$uencing 
or manipulating target audiences in presenting risk information (Ng and Hamby, 1997). 
Risk communication programs are often designed and evaluated based on their success in 
changing individual behaviors, e.g., by persuading people to stop eating fish from polluted 
lakes, to start using sun block, to participate in vacdnation programs, to wear seatbelts, or 
to refrain from smoking. Other risk presentations have as their main goals to make 
decisions that have already been reached palatable to those affected (often a lost cause if 
those affected did not participate in the decision) ‘and to confer legitimacy on decision 
processes by holding open meetings and sharing information. 

Effective communication and facilitation about food-related risks enables 
stakeholders, experts, and decision-makers to participate more effectively in risk 
management decision processes. It does so by structuring how their beliefs, values, &d 
concerns are elicited, shared, used to create and evaluate decision options, and acted on. It 
may also enable the facilitator to pursue policy goals in setting the agenda and managing 
the process to promote certain ends. 

DESIRED OUTPUTS OF RISK COMMUNICATION 

A successful risk communication program summarizes and presents the results of 
risk analysis in a way that clearly and credibly answers the following questions for the 
intended audience: (a) What should I do now? (b) Why is it desirable? / What are the 
benefits? (d) Why should I believe it? 

The output of a risk communication program should be an exposition of risk 
analysis results that is both accurate and effective in changing beliefs, attitudes, and 
behaviors. Communication and presentation styles that are most effective in changing 
behaviors typically differ in structure, content, and ,emphasis from those that best express 
the technical content of risk assessment findings or that invite and elicit fruitful 
participation and interaction. For example, accurate communication of technical findings 
about risks and uncertainties to technically trained decision makers, and effective internal 
communication about facts, assumptions, conclusions, and uncertainties among expert 
members of a risk-assessment or risk management team, can greatly benefit from technical 
methods. Causal graph models, simulation-based ‘what-if analyses, sensitivity analyses, 
risk profiles, and Bayesian posterior distributions (see Appendix A) can convey precisely 
what is known, how it is known, and what remains unknown or assumed - to audiences 
well trained in such methods. 
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But technically accurate risk communication does not address other key goals, such 
as telling people what has been decided or what they should do persuasively and credibly 
so that they agree (http://www.foodsafetynetwork.ca/food/blainepowell.pdf). It may not 
even give non-specialists the information they need to make improved decisions. It does 
not address the need to elicit stakeholder concerns and values or to address them in risk 
assessment and decision making. By contrast, persuasive communication about risks and 
risk management decisions to stakeholders, media, and the public requires different 
building trust, gaining and maintaining credibility, and preparing effective summaries of 
decision-relevant information using appropriate framing techniques. Brevity, clarity, focus, 
candor, cogent examples, and deliberate attempts to distance one’s self from negative 
stereotypes of risk communicators may be crucial for communicating technical risks to 
non-specialist audiences so that the message is listened to instead of being tuned out or 
dismissed (Peters et al., 1997; Byrd and Cothem, 2000, Chapter 12.) 

These factors help to establish an audience’s perception of knowledge and 
expertise, openness and honesty, and concern and care - all of which, in turn, tend to 
promote trust in the speaker and acceptance of his or her risk messages. More generally, 
audience members consider the source of information, emotional style, framing, and 
imputed motives of the speaker in assessing the credibility of the message and in 
responding to it (htt~://www.insnection.~c.caien~lish/core.shtmI). 

METHODS FOR RISK COMMUNICATION 

How risk information is formatted and presented can greatly affect how recipients 
assimilate and act on it. For example, in medical decisions, people are more likely to elect 
a medical procedure when it is described as “99% safe” then when it is described as having 
“1% chance of complications” (Gurm and Litaker. 2000). Presenting relative risks rather 
than absolute risks and using loss framing instead of gain framing make it more likely that 
patients will adopt screening procedures. In presenting chemical risks, the language used 
to describe risks may trigger speculations about the presenter’s motives and undermine his 
or her credibility with the target audience (MacGregor et al., 1999). Understanding such 
effects can help in preparing the presentation of factual information in ways that are likely 
to elicit desired responses. 

A striking insight from the framing literature is that there may be no neutral way to 
present risk information. Any presentation carries with it potential presentation and 
framing effects and biases that may affect the recipients’ attention, interpretation, and 
actions. Presenting the same information in different ways and emphasizing fact-rich 
displays (e.g., cumulative risk profiles) that are not strongly associated with known 
presentation biases may come as close as possible to providing the information needed for 
rational decision-making without influencing the decision. Such displays often lack the 
brevity and focus that are most effective in action-oriented presentations. 
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Effective risk communication must be concerned with process as well as with 
outcome. If people believe that identifiable groups are having risks imposed on them 
unfairly by identified others having superior power, authority, or information, the result is 
likely to be outrage (N_p and Hamby, 1997). Unresolved outrage can quickly destroy the 
chances for joint problem-solving as an approach to risk management decision-making and 
conflict resolution. To resolve such situations, it is important to acknowledge and address 
the perceived unfair situation, either by correcting it or by discussing how decisions should 
be made when values and interests genuinely conflict and then demonstrating willingness 
to abide by agreed-to principles of fairness in deciding and communicating what will be 
done. 

The following guidelines for communicating regulatory risk analyses and risk 
management decisions to the public are representative of much prescriptive literature on 
structuring risk communication and management efforts (e.g., Na and Hambv, 1997). 

Elements of a Successful Agency Risk Communication 

1. Be clear on the roles and goals of risk management program (e.g., is the goal to inform, 
influence, or involve the audience?) 

2. Address stakeholder concerns. What knowledge, beliefs, values, attitudes, cultures, and 
contextual factors shape their concerns and motivate their actions? 

3. Study/understand riskperceptions, concerns, and most effective communication styles. 

4. involve stakeholders. Successful risk communication should be interactive and participatory, 
not a one-way broadcast. 

5. Develop technical risk assessment content to support effective risk communication by 
answering specific questions/addressing concerns. ISmphasize decisions and consequences, not 
pure science 

6. Organize risk assessments to facilitate effective presentation of content. Identify outcomes of 
interest or concern to stakeholders, identify decision options, show how they affect outcome 
probabilities, and quantify trade-offs among likely consequences of different options. 

7. Organize risk management decision processes to ejiminate outrage, accomplish goals, serve 
chosen roles, and reflect Agency values. 
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APPENDIX A: METHODS AND DATA SOURCES FOR RISK ASSESSMENT 

The achieve the goals and to produce the desired outputs of risk analysis for food- 
borne pathogens (resistant or not), it is necessary to have access to appropriate technical 
methods and data. This appendix introduces methods, references, and data sources useful 
in carrying out risk analyses. It briefly addresses the issues of how to create predictive risk 
assessment models, how to validate them, and how to work with realistic remaining 
uncertainties and data gaps. For additional discussion of methods and data, see Haas et al. 
(1999) (http://www.bookhq.com/compare/047 11839’?O.html). 

METHODS AND DATA FOR RISK ANALYSIS : 

Overall approaches for carrying out food safety assessments, microbial risk 
assessments, and antimicrobial risk assessments include: 

l Qualitative screening and r-anking methods. These seek to simplify and clarify risk 
analysis processes by using holistic scores or rankings for various components that 
contribute to exposure and risk (e.g., relqase of resistant strains, exposure to 
released strains, and consequences of exposure for reduced treatment effectiveness 
and/or for increased mortality, morbidity, or virulence.) These methods are still 
under development and require validation before their performance in identifying 
effective risk management decisions will be understood. Strengths include 
simplicity; potential limitations include unclear interpretations, inadequate 
information output to support rational risk management decision-making, and 
incorrect ranking of risks and/or of risk management interventions. 

l Quantitative risk analysis methods. These seek to quantify how exposures and 
resulting frequencies, magnitudes, and population distributions of specific adverse 
health consequences will change if different:risk management decisions are made. 
Examples of quantitative risk assessment approaches include “bottom-up” farm-to- 
fork risk models that seek to simulate or quantify how microbial loads change at 
each stage (e.g., transportation, slaughter, wholesale storage, retail, preparation); 
and “top down” retrospective (“fault tree”) models that estimate the fraction of 
adverse health outcomes (such as treatment failures) that are caused by bacteria 
from specific sources. Strengths include providing information that is directly 
relevant for risk management, as well as ability to express both knowledge and 
uncertainty in considerable detail (e.g., using probability distributions.) Limitations 
include the need to collect relevant data to relate decisions to their probable impacts 
on exposures, as well as a need for data on exposure-response relations. 

l Decision trees. Decision trees ask a sequence of qualitative and/or quantitative 
questions about a situation, then provide a rjsk estimate and/or recommended risk 
management action for the specific situation based on the answers to these 
questions (i.e., on which “tip” of the tree the answers lead to). The risk estimates at 
the tips of a tree may be quantitative or qualitative. Thus, decision trees can 

66 



combine aspects of qualitative and quantitative risk management. Strengths include 
simplicity, flexibility, and ability to incorporate all relevant factors in making risk 
predictions and recommendations. The main limitation is that all problems leading 
to the same tip of the tree are treated the same. 

No matter which of these high-level approaches is used for organizing and 
displaying the results of the analysis, the process of risk analysis is traditionally presented 
as a sequence of steps, as in Table 1 of the text. The steps of hazard identification, dose- 
response modeling, and exposure assessment, typically require the specialized substantive 
knowledge of engineers, epidemiologists, industrial hygienists, toxicologists, and other 
scientists and subject-matter experts. Risk quantification and characterization use 
statistical, probability, process engineering, and simulation modeling methods to prepare 
probabilistic summaries of the likely frequency and severity (and perhaps also the 
distribution in a population) of adverse health consequences from different risk 
management alternatives. Back-tracking and iterative refinements at each step in Table 1 
may occur as more information is gained. Quantitative risk characterization draws together 
all of the technical information, synthesizing hazard, exposure, and quantitative dose- 
response information into summaries of risk and uncertainty to inform risk management 
decisions. These decisions, in turn, may generate actions and information that lead to new 
information about hazards, exposures, and dose-response relations. It is now widely 
accepted that uncertainties about these components of risk must be included in the risk 
characterization. 

Most health risks are highly uncertain. Recommendations to begin expensive risk 
management activities commonly trigger re-analyses of hazards, exposures, and plausible 
risk magnitudes as those who must bear the costs of risk management question the need for 
and health benefits from their efforts. Each round of risk characterization and risk 
management decisions can prompt new research into underlying causal mechanisms of 
effects and details of exposure. The results may eventually lead to revised risk estimates 
and recommendations for risk management. Thus, in practice, the steps in the risk analysis 
process are tightly linked and improvements in information at one step may trigger further 
iterations elsewhere in the process. 

ISSUES AND CHALLENGES FOR RISK ANALYSIS 

Key issues in performing a health risk analysis include: 

l Causal modeling of exposures and health effects. In health risk analysis, opinions and 
beliefs about the probable consequences of decisions are expressed as explicit, publicly 
disclosed quantitative models of exposure and of exposure-response relations. These 
models usually represent aspects of causation. They are intended to describe how 
changes in actions propagate through one or more causal chains to change exposures 
and health effects. This emphasis on causation contrasts with many statistical and 
biostatistical models that emphasize inference about the probability of observing an 
effect, given observed data about an exposure. Statistical associations useful for 
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inference are not necessarily useful for predicting the causal impacts of changes in 
exposures. 

0 Inferred risks and consequences. Risks often cannot be directly observed or measured. 
Available epidemiological data may be insufficient to uniquely identify the contribution 
to health risks from specific microbial sources and resistance determinants. Therefore, 
specific risks must often be inferred from models, knowledge, assumptions, and data. 
Inferences about human health risks drawn from animal studies and/or from chemical 
structures and experimental results in various in vitro assays and biological systems 
require drawing conclusions based on analogy, induction from examples, and perhaps 
deduction about likely biochemical processes - forms of inference that are often 
challenging compared to routine statistical calculations of conditional probabilities or 
expected values. 

l Multiple stakeholders and decision makers. Multiple stakeholders and decision makers 
usually participate in activities that create health risks and in risk management decision- 
making. For example, consumer exposure to a food-borne pathogen arises from the 
joint decisions and behaviors of farmers, producers, and food handlers and preparers. 
Multiple parties are therefore involved in risk management, and effective risk 
management may require coordinating their roles and responsibilities. 

. Risk management evaluation of health outcomes. Evaluating risks that involve potential 
losses of life and health requires special techniques. Asking people about their 
willingness to pay (WTP) to reduce or remove such risks, or about their willingness to 
accept (WTA) monetary compensation to bear them, elicits responses that may reflect 
political and psychological attitudes and beliefs about rights and concerns about fairness 
and equity in the allocation of risks or costs while being quite insensitive to the 
probabilities and magnitudes of the consequences involved (Kahneman et al., 1999). 
Thus, individual economic values and preference trade-off rates for risks involving 
potential loss of health or life may be difficult or impossible to define and measure apart 
from political concerns and cultural attitudes. 

l Risk communication: Risks and uncertainties must often be communicated to 
stakeholders who lack the data, resources, or expertise to accurately quantify and 
understand risks without assistance. Yet, objective communication of risk information 
is often difficult or impossible. How to communicate risk information without 
misleading or manipulating the audience is a substantial challenge. 

l Risk perception, comprehension, internalization and action: Understanding and 
perceptions of risks by producers, retailers, consumers, and physicians, and their 
resulting behaviors, may be affected in unexpected ways by attempts to describe the 
results of formal risk assessments. Even if risk information is communicated accurately, 
behaviors may not change in the ways that lmodels of rational behavior predict. 
Understanding how stakeholders (e.g., consumers, producers, physicians, and 
regulators) do and should make decisions based ‘upon risk information is an active area 
of research. 
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METHODS OF RISK ANALYSIS THAT SHOULD BE AVOIDED 

As the relatively new field of antimicrobial risk assessment has developed, several 
types of risk analysis have been attempted that, we believe, will ultimately be replaced by 
more useful and valid methods. These include: 

l Subjective/judgmental risk analysis. While subjective rating and ranking systems 
can be useful for preliminary screening of hazards and risk management actions, 
they have important limitations. Subjective risk analyses in which participants are 
asked or required to make holistic judgments of risks attributable to a cause, or of 
the relative frequency and/or importance of hazards, exposures, or health 
consequences, are generally not trustworthy. They can lead to incorrect or 
ineffective risk management decisions (i.e., decisions that do not increase the 
probabilities of preferred outcomes), encourage group-think (including agreement 
and high perceived confidence in mistaken judgments and conclusions), and 
obscure or replace the rational and scientific reasons for decisions. Even 
technically trained experts are notoriously poor at forming accurate judgments 
about probabilities, causes, and risks (Kahneman D, Slavic P and Tversky A 1982. 
Judgement Under Uncertainty: Heuristics and biases. Cambridge University Press.) 
Subjective risk analysis should not be used as the primary basis for final risk 
management decision-making. 

l Data-free/Assumption-Driven Risk Modeling. Some risk assessments in microbial 
safety and in antimicrobial risk analysis have created detailed sub-models (e.g., of 
cooking processes and their effects on microbial loads) based primarily or entirely 
on modeling assumptions, in the absence of adequate data to validate the modeling. 
Such assumption-driven modeling should be avoided: only models and 
assumptions that have been validated with data should be used for risk analysis. [In 
general, data-free modeling can be avoided by conditioning risk (i.e., probability 
and severity of adverse health effects) only on the observed causal predecessors 
(i.e., exposure and covariate information) of adverse health effects. Conditioning 
on all and only the available data leads to informed risk analyses while avoiding 
drawing conclusions that are highly dependent on untested, possibly incorrect, 
assumptions about unmeasured quantities.] 

l Similarly, risk analysis based on default assumptions, or on assumed attributions of 
risks to specific causes, should be avoided unless and until the assumptions have 
been critically assessed and validated using data for the specific microorganisms, 
exposure routes, and populations for which risks are being evaluated. Specific 
combinations of microbial pathogens, transmission pathways (including food 
animal species, other foods, drinking water, swimming water, contact with animals, 
contact with infected people, etc.) should be assessed individually. 

VALIDATING RISK ANALYSIS RESULTS 
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A risk assessment model predicts the probable human health effects and other 
consequences of different risk management decisions by predicting their impacts on human 
exposures to microbial loads. Following implementation of a risk management decision, 
these predictions should be tested by conducting an evaluation study to assess whether the 
predicted changes in exposures and health effects actually occurred. If not, the risk 
assessment may need to be refined (see Validation of Risk Characterization) and the 
recommended risk management decision may have to be revised. 
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METHODS AND DATA FOR HAZARD IDENTIFICATION 

On the biological side, hazard identification draws on knowledge of infectious 
diseases, epidemiological data, and clinical microbiology to create testable hypotheses 
about causal relations among decisions, exposures, and health consequences (Haas CN, 
Rose JB, Gerba CP. Quantitative Microbial Risk Assessment. Wiley, 1999). On the 
statistical side, hazard identification uses methods of causal analysis to identify the 
decision-exposure and the exposure-health effects links in the following causal chain: 

decisions + exposures + health effects t covariates. 

[In such a diagram, the conditional probability distribution of each quantity depends on the 
values of the quantities that point into it, if any. For details, see Chapter 1 of Shipley, B. 
Cause and Correlation in Biolonv: A User’s Guide to Path Analysis, Structural Equations 
and Causal Inference. Cambridge University Press. 2002. A link in a causal chain or graph 
is identified by using appropriate statistical tests to show that it is conditionally independent 
of all of its more remote ancestors, given the values of the variables that directly point into 
it. The causal relations are quantzj?ed by specifying the conditional probability of each 
variable’s value, given the values of variables that point into it, if any. Input variables 
having no arrows pointing into them may have (unconditional) probability distributions 
reflecting uncertainty about their values.] Hazard identification deals with the 
identification of causal links that are then quantified in the exposure assessment and 
exposure-response steps. 

Table Al outlines steps for forming and testing causal hypotheses about exposure- 
response relation using epidemiological data. The more of these steps can be completed, 
the stronger is the inference that there is a causal relation between exposure and risk. Most 
statistical methods used in epidemiological risk analysis focus on steps 1 to 3, i.e., 
identifying non-random associations and eliminating potential biases and confounders as 
likely explanations. These steps can often be carried out using data from observational 
studies without requiring direct manipulations and experimental verification of predictions. 
The main method is to systematically enumerate and then eliminate (if possible) 
competing, non-causal explanations for the observed data using statistical tests. 

Table Al: Steps to Establish a Causal Exposure-Risk Relation 

1. Identzfj a statistically significant exposure-response association. Demonstrate that 
there is a non-random positive statistical association between exposure histories or 
events and adverse human health consequences (or other undesired consequences) in an 
epidemiological data set. Case-control, prospective cohort, or other cross-sectional or 
longitudinal epidemiological data may be used for this purpose. 



2. Eliminate confounding as a possible cause of the association. Show that it is not due to 
or explained by other (non-exposure) causes such as differences in lifestyle factors, age, 
or exposures to other confounders. (Nurminen, 1983; Lin et al., 1998) 

3. Eliminate biases from sampling, information collection, and modeling choices as 
possible causes. Show that the association is not explained by biases in who was 
selected (as study subjects or as controls) or in how information about them was 
collected and analyzed. (Choi and Noseworthy, 1992) 

4. Test and con@m hypothesized causal ordering and conditional independence relations 
among observed values of variables. For example, show that the response is not 
conditionally independent of its hypothesized direct causal predecessors (e.g., exposure), 
but that it is conditionally independent of more remote causal predecessors given the 
direct predecessors. (Shipley, 2000) 

5. Con@-m efficacy of interventions. Confirm that changes in the levels of direct causal 
predecessors (e.g., exposures) are followed by the predicted changes in the levels of the 
variables they affect. This may often be done from time series observations, even if 
direct experimental manipulation is impossible using methods for interrupted time series 
analysis, intervention analysis, and quasi-experiment design and inference (Granger, 
1980; Campbell and Stanley, 1963; McDowall et al., 1980). 

6. Identzfi and elucidate causal mechanism(s). Explain how changes propagate via one or 
more causal paths to produce effects (Nurminen, 1997). A “causal path” is a sequence of 
steps in which completion of the earlier steps creates conditions that trigger or increase 
occurrence rates of subsequent steps. Such steps may be identified from experimental 
data and/or by applying generally accepted laws (Renton, 1994). 

Many epidemiologists have recognized the logical necessity, in order to draw valid 
causal inferences, of refuting competing hypothesized explanations for observed exposure- 
response associations (Maclure, 1991). Table A2 summarizes common competing 
explanations (mainly, confounding and/or sampling, information, or modeling biases) and 
technical methods that have been developed to refute them. Yet, requiring alternative (non- 
causal) explanations to be refuted can be perceived as unhelpful when it is confined to 
merely identifying Iogical possibilities without also addressing their plausibility and the 
likely magnitudes of their impacts on risk estimates. For example, Savitz et al. (1990) state 
that “Biases that challenge a causal interpretation can always be hypothesized. . ..It is 
essential to go beyond enumerating scenarios of bias by clearly distinguishing the 
improbable from the probable and the important from the unimportant.” They argue that 
those who do not like a causal interpretation of epidemiological data might readily 
construct speculative hypothetica potential biases and confounders that can not all be 
refuted with available resources. This strategy could prevent conclusions about causation 
from being drawn when common sense and sound policy would be better served by 
accepting that causation is plausible, even if it is not practical to refute all conceivable 
alternative explanations. 
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On the other hand, accepting a statistical association as causal without rigorously 
examining and excluding competing hypotheses may make it too easy to launch expensive 
risk management control actions that would be effective if the association were causal, but 
that will not produce the anticipated benefits in practice. A partial solution to this dilemma 
is to focus on those non-causal explanations that appear to be likely and important (Savitz 
et al., 1990) i.e., those (if any) that might plausibly explain most or all of the observed 
exposure-response associations. Appropriate data analysis methods can often reveal which 
potential biases and confounders are most likely to provide non-causal explanations in 
specific studies. They can also help to eliminate logically conceivable biases that do not, in 
practice, play a large role. Most importantly, they can help to eliminate the most likely and 
important non-causal explanations when those do not, in fact, apply. Evidence that makes 
non-causal explanations unlikely makes causal explanations more likely, even if the 
evidence is not definitive. 

In summary, the refutation approach to hazard identification suggests a key 
criterion for establishing causation for an observed exposure-response association: have 
competing non-causal explanations been eliminated? If so, then the hypothesis of 
causation is supported by the data used to refute them. 

METHODS OF HAZARD IDENTIFICATION THAT SHOULD BE AVOIDED 

Several common errors in hazard identification should be avoided, as follows: 
l Non-causal hazard ident@ation. Simply identifying a microorganism in food does 

not show that it causes human health harm in practice and thus does not constitute 
hazard identification. Even if it is known that the identified agent can be 
pathogenic under laboratory conditions, it is still necessary for hazard identification 
to demonstrate that it causes harm in reality. 
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metrics 

“Include non-surviving subjects in the 
Differential follow-up loss 

study through proxy 

* In cohort studies, use muItiple comparison cohorts. 

l Hard to prevent in case-control studies. In cohort studies, make 

r recall bias. (Basso, 1997) 
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Hazard identification based on temporal trends. Discussions of hazard 
identification in antimicrobial risk assessment sometimes refer to temporal trends, 
in which adverse heahh effects occurred after the historical introduction of an 
antimicrobial agent in feeds. Such discussions are usually inconclusive, neither 
establishing nor refuting the possibility of a causal relation. In rigorous analyses of 
causation, such “temporal trend” arguments are dismissed as instances of the ex 
post or “false cause” fallacy (e.g., http://libran,.stman/tx.edu/lac~Studies/fallacvG.htm; 
http://www.beiPe.or&-~ltweasl/fallacy.htm.) However, if sufficient longitudinal data are 
available, then they may be used in conjunction with correct definitions of causation 
(e.g., http://instruct.uwo.ca/fim-lis/504/504ter.htm) and objective tests and analytic 
methods for causation (e.g., http://citeseer.nj.nec.com/55450.html) for purposes of hazard 
identification and risk assessment. However, the relevant methods (Table Al) are 
not based simply on trends, but on showing that significant changes in time series 
occur following an intervention, such as introduction of a feed additive. Statistical 
methods of intervention analysis and change point analysis in time series can be 
used for this purpose. 

l Unspecified harm. Identifying a pathogen without identifying any clinically 
relevant harm that it causes does not constitute adequate hazard identification. A 
successful hazard identification must demonstrate that exposure to the identified 
pathogen actually causes a specific adverse health effect, rather than merely that the 
potential causal agent is present. Although purely hypothetical or theoretical 
suppositions about harm caused by microorganisms or resistance determinants in 
food can be useful as hypothesis-generating steps, they do not constitute hazard 
iden@cation. Instead, hazard identification requires that the causal hypotheses be 
tested objectively, and that competing explanations be identified and refuted, using 
appropriate statistical methods. 

0 Partial or incompIete hazard identzjkation. Identifying only one component of 
hazard (e.g., effects of animal antimicrobial agents on human health effects of 
resistant bacteria but not susceptible bacteria) can give an incomplete description of 
potential risk that is not suitable for guiding rational decision-making. 

In summary, although it may be difficult or impossible to prove causation from data, it 
usually is possible to test and refute competing non-causal hypotheses and to test whether 
the hypothesized causal relations between decisions and exposure and between exposure 
and risk are consistent with available data. These tests, and the presentation of the results, 
are the essential outputs of a successful hazard identification. 

75 



METHODS AND DATA FOR EXPOSURE ASSESSMENT 

Exposure assessment uses predictive microbiology to predict how microbial loads 
reaching consumers or other exposed populations (e.g., patients) will change if different 
risk management decisions are made. The required data and calculations can be organized 
and presented using any of the following exposure modeling approaches: 

l Process simulation modeling approaches (Haas et al., 1999, 225-248) describe the 
flow of food animal carcasses, portions, and products through various sub- 
processes, each characterized by an input-output relation described by a regression 
model or other simple statistical or simulation model. Changes in microbial loads 
are tracked as part of the input-output descriptions. Available measurements and 
data may be used to fit simple probability distributions and parametric models to 
describe the growth or attenuation of transmitted microbial load at each stage. 
Examples include Poisson or negative binomial distributions of microbial loads (fit 
using most probable number (MPN) data and maximum-likelihood statistical 
estimation algorithms) and Gompertz growth curves for pathogen growth kinetics. 
Data for growth rates of E. coli 0157:H7, Listeria monocytogenes, Clostridium 
botulinurn, Staphylococcus aureus, and other common pathogens can be found in 
Haas et al. (1999, Chapter 6) and its references. Consumption factors and 
frequencies for water and foods (beef, fish, chickens, eggs, shellfish, etc.) are 
available from the literature (ibid, p. 239, 241) and can be used to model the 
frequency with which microbial loads on food portions are ingested. Transfer rates 
of bacteria between skin and hands and from food to hands have also been 
estimated for various bacteria; however such details are not necessarily needed or 
useful if adequate data on earlier and later points in the causal chain leading from 
animal loads to human illness are available. 

l Farm-to-fork models are an important type of process simulation model. Farm-to- 
fork models track the microbial load distributions on animal carcasses, portions, and 
servings through successive stages of production, processing, transport, slaughter 
storage, preparation, and consumption. Monte Carlo simulations of the 
probabilistic input-output relations at each stage are used to propagate microbial 
load frequency distributions throughout the model. A closely related methodology 
is dynamicflow tree modeling for microbial risk assessment (Marks HM. Coleman ME, 
Lin CT. Roberts T. Topics in microbial risk assessment: dynamic flow tree process. 
Risk Analysis 1998 Jun;l8(3):309-28; http:// www.nap.edu/books/0309086272/htmV97.html). 
Dynamic flow trees use Monte Carlo uncertainty analysis to sum risks over many 
scenarios, weighted by their respective expected frequencies or probabilities, but 
without necessarily tracking all the process steps in a farm-to-form model. 

l Retrospective attribution models begin with adverse health outcomes and/or clinical 
measurements of bacteria-related harm. They use genotyping and other data to 
estimate the fraction of these cases of adverse effects that could have been caused 
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by specific exposures and sources. This attribution of measured outcomes to the 
sources that contribute to them may be repeated in several stages. Thus, the 
calculation works backward from clinical outcomes to intermediate sources (e.g., 
community vs. nosocomially acquired sources), and then to their predecessors (e.g., 
food or water consumption, contact with infected or contaminated animals and 
humans, etc.), and so forth. The process is repeated, ultimately leading back to a 
fraction of microbial load (resistant, susceptible, or both) that is estimated to be due 
to use of antimicrobial agents on the farm. At each stage, the fraction of outcomes 
contributed by each preceding source is estimated. The fractions along the path 
leading from adverse outcomes back to antimicrobial use on the farm are then 
multiplied and the results are interpreted as estimates of the fraction of cases per 
year that could be prevented by eliminating any of the steps along the path, 
including antimicrobial use on the farm. 

In general, exposure models describe the dispersion and transport of hazardous materials 
(e.g., concentrations of CFUs on food animal products) through different media and 
pathways (e.g., food, water) leading from the source(s) to members of the exposed 
population. Process sub-models link the source strength and the positions of target 
receptors, perhaps integrated over time, to predict quantitative exposures received by the 
targets. In addition, exposure models model the distribution over time of human 
populations among locations (e.g., restaurants, kitchens) and activities that result in 
exposures. 

DEALlNG WITH UNCERTAIN AND INCOMPLETE EXPOSURE DATA 

A common misunderstanding about quantitative exposure models is the mistaken 
idea that they require unrealistic amounts of detailed data. This is not true when 
appropriate techniques of uncertainty analysis are used. For example, suppose that there 
are several consecutive stages in a process simulation exposure model, such as: 

Here, the wide arrows represent input-output processes and A, B, C, D are points where 
microbial loads might be measured. If measurements are unavailable for stage C, then the 
probability distribution of microbial loads at D can still be related to microbial loads at A 
(thus leaving the chain unbroken by the missing data at C) via the formula: 

Pr(load at D = d 1 load at A = a) = &,Pr(Ioad at B = b 1 load at A = a)Pr(load at D = d 1 load at B = b) 

where 

Pr(load at D = d 1 load at B = b) = C,Pr(load at D = d 1 load at C = c)Pr(load at C = c 1 load at B = b) 

In other words, it is possible to condition OYE what is observed while skipping over (or 
“marginalizing out”, in statistical terminology) unobserved quantities by summing over all 
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possible values, weighted by their conditional probabilities. The basis for inferring 
exposure distributions is conditioning of probability distributions for output quantities 
within a causal model (the simulation model), not exhaustive simulation of all relevant 
details. Statistical inference algorithms (e.g., the data augmentation algorithm; see Schafer 
JL. Analysis of Incomplete MuZtivariate Data. New York: Chapman and Hall; 1997) allow 
the conditional distributions of outputs to be quantified, conditioned on observed data, even 
when other data are missing. Thus, there is much flexibility within the process simulation 
approaches to use all available data without requiring use of unavailable data. 

In retrospective attribution exposure models, uncertainties about the attributable 
fractions at different stages are commonly treated by using upper-bound estimates. If the 
product of the upper bound estimates is small, then the true but unknown value of the 
product is also small, and this information may be sufficient to support a decision that no 
intervention is required. If the product of the upper bound estimates is large enough so that 
this conclusion cannot be justified, then the uncertainty analysis can be refined by 
estimating probability distributions for the fractions at different stages and applying Monte 
Carlo uncertainty analysis to obtain the probability distribution for their product. 

METHODS OF EXPOSURE ASSESSMENT TO AVOID 

The following approaches to exposure assessment seek to simplify the process by 
eliminating the need to consider microbial load distributions. In general, they give 
inaccurate results and should be avoided. 

l Hohtic statistical mode&. An example is the simple linear regression model: 

Exposure received = k*contamination at farm 

where k is interpreted as an overall transmission coefficient. The problems with such a 
model (called a “reduced form model”) are that (a) It fails to sum over multiple paths and 
scenarios (which must typically be represented by multiple distinct k values); and (b) It 
does not necessarily represent information about how a change in the right-side explanatory 
variables (“contamination at farm”, in this example) would causally affect the left-side 
variable. 

Note: Only structural equations, not reduced-form ones, reveal the causal relations among variables (Shipley, 
2000). As an extreme hypothetical example to illustrate this point, suppose that the correct structural 
equations in a model are: 

Exposure received = contamination at retail - contamination in kitchen (I) 

contamination in kitchen = (1/3)*contamination at retail (2). 

Equation (2) is mathematically, though not causally, equivalent to: 

contamination at retail = 3*contamination in kitchen (2’). 
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Substituting (2’) into (I) gives the reduced-form model 

Exposure received = 2 *contamination in kitchen. (3) 

While this is a valid equation for statistical inference, it cannot be used to correctly predict the causal effect 
on “Exposure received” of increasing “contamination in kitchen”. Equation (1) shows that this effect is 
negative (i.e., each unit increase in “contamination in kitchen” decreases “Exposure received” by one unit), 
while equation (3) indicates a positive statistical relation between them. Equation (l), rather than equation 
(3), is relevant for predicting causal impacts of interventions. 

l Prevalence-based exposure metrics. In general, models that use binary summaries 
of exposure metrics (i.e., “contaminated” vs. “not contaminated”) do not contain 
enough relevant exposure information to make accurate risk predictions (e.g., 
Rosenquist et al., 2002). Such prevalence summaries of exposure should not be 
used for risk assessment. 

Note: If a qualitative summary of exposures is desired, then instead of using 
prevalence metrics, decision tree algorithms can be used to automatically bin more 
detailed exposure-response data into a few aggregate exposure intervals (or 
combinations of intervals, if there are multiple exposure factors) that predict similar 
response levels (Zhang H, Singer B. Recursive Partitioning in the Health Sciences. 
New York:Springer; 1999.) 

VALIDATION AND REFINEMENT OF EXPOSURE ASSESSMENT MODELS 

Exposure assessment models should be validated by comparing their predictions 
under different conditions to measured values of exposures and/or their surrogates. An 
exposure model is used to predict microbial loads (or their surrogates) at measurement 
points under different conditions, e.g., in different locations, for different seasons, etc. 
These predictions are compared to the measured values using statistical goodness-of-fit 
tests and diagnostic plots, to determine whether the observed values are statistically 
significantly different from the predicted distributions of values. Haas et al. (1999), 
Chapter 6, provides details of goodness-of-tit tests for parametric exposure models, 
(Chapter 7 also discusses validation and uncertainty analysis of simulation models, 
although with emphasis on dose-response rather than exposure models.) 

If the predicted exposures do not adequately match validation data, then the 
exposure model should be corrected. This can be done by refining the model to include 
omitted variables, to more accurately model dependencies among its inputs (Haas CN., On 
modeling correlated random variables in risk assessment, Risk Anal 1999 Dee; 19(6): 1205- 
14) and/or by using the differences between predicted and observed values to select more 
appropriate mathematical model forms that can explain and reduce these differences. To 
avoid using non-valid models, it is often desirable to apply flexible non-parametric data 
descriptions and to use predictions from multiple alternative models that are consistent with 
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available knowledge and data, weighted by their probabilities. Table A2 mentions 
technical methods and statistical algorithms for accomplishing these goals. 

If the predicted exposures adequately match validation data according to goodness- 
of-fit tests and model diagnostics (e.g., plots of residuals), then the exposure model may be 
used to make predictions for risk assessment within the validated range of conditions. In 
this case, remaining uncertainty in model parameters, inputs. and predictions should be 
expressed through cun$dence intewuZs for single quantities (e.g., the mean exposure or the 
upper 95% exposure limit in the population) and through joint corrfdence regions for 
multiple quantities, such as the exposures received by different subpopulations. 



METHODS AND DATA FOR DOSE-RESPONSE MODELING 

The main approaches to quantitative exposure-response modeling are as follows: 

l Empirical parametric statistical dose-response models: If experimental data are 
available, e.g., from feeding studies, then any parametric statistical model that 
adequately describes the dose-response data may be used to summarize it (at least 
over the range of the observed data.) For example, logit, probit, log-logistic, log- 
probit, and Weibull models are often used. These empirical model curves can be fit 
automatically to data using maximum-likelihood estimation (MLE) or other 
statistical curve-fitting algorithms. However, extrapolating empirical statistical 
models outside the range of the experimental data, especially, to low doses, is in 
general not justified. Empirical curve-fitting should be viewed as an interpolation 
approach for describing potentially large amounts of experimental data with a 
smaller number of parameters. 

e Biologically motivated pavametvic dose-response models. The probability that 
enough ingested organisms survive to reach a site where infection can be initiated 
has been calculated in simplified biomathematical models of the probabilistic 
survival and infection processes. Doing so leads to a catalog of parametric dose- 
response models appropriate for different simplifying assumptions about the disease 
process. These include the exponential, one-hit, multi-hit, Beta-Poisson, threshold, 
and negative binomial models, as well as mixture distribution models for 
populations with heterogeneous dose-response parameters. These parametric 
models can be fit to experimental data using maximum-likelihood estimation 
(MLE) or other statistical curve-fitting algorithms. Unlike the purely empirical 
models, these models provide a theoretical basis for extrapolating beyond the range 
of the data used to fit them, at least to the extent that their underlying assumptions 
provide useful approximate descriptions of biological reality. 

l Complex dose-response models. Dose-response relations can be decomposed into 
components, e.g., modeling the internal dose received from a given external dose 
applied; the probability of infection given dose; and the probability of illness given 
infection. If these components can be estimated separately from available data, 
then the results can be composed to give an estimate for the total exposure-illness 
dose response function. Moreover, separate estimation of components may provide 
a way to help extrapolate results across species, if similarities and differences in 
relevant component processes are known. In practice, however, this decomposition 
strategy has usually been combined with simplifying assumptions about the 
components, leading to the biologically motivated parametric dose-response models 
already mentioned. 
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l Epidemiological exposure-response models. It may  be possible in some 
circumstances to use epidemiological data from case-controf studies, cross-sectional 
surveys, prospective cohort studies (relatively rare), or other designs to estimate 
approximate exposure-response relations. The major statistical chal lenge is to 
separately estimate exposures and conditional probabilit ies of adverse responses, 
given exposures. Issues such as recall biases, omitted variables, uncertain model  
forms, etc. in Table A2 can complicate valid statistical inference of dose-response 
functions from epidemiological data, or even make it impossible. However, 
progress in advanced statistical model ing methods, such as m ixture distribution 
model ing with an unknown number of m ixture components,  raises the possibility of 
using epidemiological data for exposure-response modeling. 

Despite this range of theoretical approaches, in practice biologically motivated 
parametric dose-response models are the most common,  and usually the best justified, 
models in widespread use. They are usually fit to data by a  combination of MLE for point 
estimates and computationally intensive resampling techniques (e.g., bootstrapping 
algorithms) for conf idence intervals and joint conf idence regions for mode1 parameters 
(Haas et al., 1999, Chapter 7, c.f. p. 293). 

Haas et al. (I 999, p. 98) state that “It has been possible to evaluate and compile a  
comprehensive database on m icrobial dose-response models.” Chapter 9  of this 
monograph provides a compendium of dose-response data and dose-response curves, along 
with critical evaluations and results of validation studies, for the following: 

l Campylobacter jejuni (based on human feeding study data) 
l Cryptosporidium parvum 
l Pathogenic E. coli 
l E. coli 0157:H7 (using Shigella species as a  surrogate) 
l Giardia lamblia 
l nontyphoid Salmonella (based on human feeding study data) 
l Salmonella typhosa 
l Shigella dystenteriae, S. Jlexneri, etc. 
l Vibrio cholerae 
l Adenovirus 4, Cocksackie viruses, Echovirus 12, Hepatitis A virus, Poliovirus I 

(minor), rotavirus 

Thus, for many food-borne and water-borne pathogens of interest, dose-response models 
and assessments of fit are already available. However, some of these existing models have 
parameter values estimated from data collected from lim ited subpopulat ions (e.g., healthy 
young male student volunteers for feeding studies). It may  be necessary to modify these 
models for other subpopulat ions, e.g., by multiplying by estimated relative risk factors. On 
the other hand, many of the existing models have been validated using outbreak data and 
other epidemiological sources, and the best-fitting models (often, the Beta-Poisson model) 
usually compare quite favorably to available data. 

82 



METHODS OF EXPOSURE-RESPONSE MODELING TO AVOID 

Only validated exposure-response models should be used for purposes of 
quantitative risk assessment. Unvalidated models may be used in preliminary screening , 
e.g., to establish whether a risk might be large enough to justify a risk management 
intervention. They should not be used for final decision-making. 

Aggregate population-based statistical models that do not distinguish between 
exposure levels and exposure-response relations have sometimes been proposed. These 
seek to simplify the risk analysis process by eliminating the need to consider exposure- 
response relations, e.g., by developing an aggregate regression relation between 
contaminated food produced and adverse health effects in the population. In general, such 
approaches give inaccurate results that cannot be interpreted causally, and should be 
avoided. Assumption-driven statistical models (e.g., any of the empirical exposure- 
response relations) that have not been validated should also be avoided. 

DEALING WITH UNCERTAINTY IN EXPOSURE-RESPONSE MODELS 

If the correct dose-response model form is unknown and several models all provide 
adequate fits to the available data, then multiple plausible models may be used to carry out 
the rest of the assessment. In this case, the analysis can be organized and presented as a 
decision tree in which the choice of model form leads to different branches in the tree. The 
results of the risk analysis at the end of each branch of the tree are contingent on the 
assumptions and modeling choices that lead to it. Different branches may be weighted by 
the relative strength of the evidence supporting them. This approach can be used to present 
and analyze uncertainties due to choices of dose metrics, response definitions, and other 
modeling decisions, as well as choices of particular dose-response models. 

Note: Branches in a model uncertainty decision tree can be weighted using formal statistical criteria such as 
the AIC, BIC, Mallows’ criterion, cross-validation results, etc. These measures for model evaluation and 
model selection are now built into many statistical software packages, including SAS. However, in practice, 
it is more usual to rely on subjectively judged weights of evidence to combine results across multiple 
branches of the model decision tree. (See Sielken RL Jr. Bretzlaff RS. Stevenson DE. Challenges to default 
assumptions stimulate comprehensive realism as a new tier in quantitative cancer risk assessment. Regd 
Toxicol Pharmacol. 1995 Apr;2 I (2):270-80.) 

Within each exposure-response model form, uncertainties about parameter values 
and model predictions can be quantified using computationally intensive resampling 
techniques to compare results based on multiple subsets of the available data. Model cross- 
validation and bootstrap techniques can be used to estimate the predictive power of a model 
and to estimate joint confidence regions for its uncertain parameter values, respectively. 
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VALIDATION OF EXPOSURE-RESPONSE MODELS 

Dose-response models should be validated by analyzing epidemiological data, 
especially data from outbreaks (Haas et al., 1999, Chapters 7 and 9). The validation step 
allows the predictive accuracy of the models accuracy to be critically assessed. 

One way to carry out dose-response model validation with outbreak data is to use 
the dose-response model, together with the estimated attack rates and durations of 
exposures and estimated quantities ingested, to predict the most likely dosages in the 
contaminated media that caused the outbreak, the most likely illness ratio during the 
outbreak, and levels of other observed quantities. The predicted levels can then be 
compared to the actually measured or observed values recorded during the investigation of 
the outbreak. See Haas et al. (1999) for details. 

If the predicted quantities (e.g., contamination levels, illness ratios, etc.) do not 
match the validation data, then the exposure-response model should be corrected. This is 
done by refining the model to include other relevant variables and/or by using the 
differences between predicted and observed values to select more appropriate mathematical 
model forms that will explain and reduce the differences. If the predicted exposures 
adequately match validation data, as indicated by goodness-of-fit tests and model 
diagnostics (e.g., plots of residuals), then the exposure-response model may be used to 
make predictions for risk assessment within the validated range of conditions. In this case, 
remaining uncertainty in model parameters and predictions should be expressed through 
confidence intervals for single quantities (e.g., the mean illness rate in the population) and 
through joint confidence regions for multiple correlated quantities, such as the risks 
experienced by members of different subpopulations. 
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METHODS FOR RISK CHARACTERIZATION 

Risk characterization is a purely arithmetic process. Given the results of the 
exposure assessment and exposure-response modeling steps, the risk metrics and 
confidence intervals can be calculated by Monte Carlo simulation uncertainty analysis 
applied to the analytic probability formulae such as the following: 

Pr(effect E occurs in person j on day d) = 
C,Pr(effect E occurs in j /j’s exposure = x)PrCj’s exposure = x on day d) 

The summation is performed over different exposure levels, x. The two terms are: 

0 Pr(exposure of j = x on day d) = probability for j’s exposure level on day d. This is 
obtained from the exposure model. The probabilities of different exposure levels 
can be conditioned on any available information about individual j. Typically, 
exposure is treated as a random variable, and Monte Carlo uncertainty analysis is 
used to repeatedly sample values of exposure from its conditional distribution. 
These sampled values are used to calculate corresponding probabilities of effects in 
the above formula. 

0 Pr(effect E occurs in j 1 j’s exposure = x) is the exposure-response probability 
relation obtained from the exposure-response model. The response probabilities at 
different exposure levels can be conditioned on any available information about 
individual j. Typically, the dose-response model is treated as uncertain, and Monte 
Carlo uncertainty analysis is used to repeatedly sample values of its parameters 
from their joint conditional distribution, given all available data. These sampled 
values are used to calculate corresponding probabilities of effects in the above 
formula. 

Repeated sampling of individuals (randomly sampled from the joint frequency distribution 
of individual covariates and exposures) and of exposures and dose-response relations given 
individual characteristics, allows all of the output risk metrics, confidence intervals, and 
confidence regions to be automatically calculated as accurately as desired. It is common 
practice to use commercial Monte Carlo uncertainty analysis software products, such as 
AnalyticaTM, @RISKTM or Crystal Ball*, to automatically perform the required 
simulations, collect the results, and display the output risk metrics, confidence intervals, 
and joint confidence regions. These products use special simulation techniques (such as 
antithetic variate variance reduction, importance sampling, Latin Hypercube sampling, etc.) 
to reduce the CPU time needed to obtain accurate answers. 

In special cases, risk characterization calculations can be carried out symbolically 
or analytically. However, the current state of practice generally relies on Monte Carlo 
uncertainty analysis to obtain fast, accurate numerical answers. Guidance and principles 
for using and documenting Monte Carlo uncertainty analysis in risk characterization are 
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available in: Burmaster DE, Anderson PD. Principles of good practice for the use of Monte 
Carlo techniques in human health and ecological risk assessments. 
Risk Anal. 1994 Aug; 14(4):477-81. 

METHODS OF RISK CHARACTERIZATION TO BE AVOIDED 

Alternative methods of risk characterization have sometimes been proposed. For 
example, rather than building up risk from exposure assessment and exposure-response 
components summed (or integrated) over all exposure levels weighted by their respective 
probabilities, it has sometimes been proposed to directly estimate total risk in a population 
and then to use aggregate regression models or equations to attribute some part of this total 
to animal antimicrobial use. In general, this approach necessarily requires subjective policy 
judgments about attribution (since attributable risks cannot be uniquely objectively defined 
from data in multivariate models where different factors, such as the care taken by food 
handlers, processors, consumers, and farmers interact to determine total risk.) It may also 
produce results that are causally irrelevant, since attributable risk fractions usually do not 
correctly predict the changes in effects that would be caused by changes in exposures or 
other inputs. Therefore, these methods are not recommended. 

VALIDATION OF RISK CHARACTERIZATION RESULTS 

Ideally, risk characterizations should be validated if possible, although this is not 
strictly required if the exposure assessment and exposure-response variables have already 
been validated. Risk characterizations can be validated, if adequate data are available, by 
applying their exposure assessment models and exposure-response models to multiple 
distinct populations (e.g., in different geographic sub-regions and/or in different seasons or 
years). The predicted risks for each subpopulation are then compared to observed values of 
illness rates and other metrics to determine whether the observed values could plausibly 
have been drawn from the predicted risk distributions. Formal goodness-of-fit tests and 
model diagnostics are used to compare observed and predicted values. 

If the predicted risks do not match the validation data, then model inputs, 
assumptions, and functions should be checked. They should be refined if necessary by 
using the differences between predicted and observed values to make changes in the model 
that will explain and reduce the differences. If a “comprehensive realism” decision tree 
(Sielken RL Jr, Bretzlaff RS, Stevenson DE., 1995) has been used to organize and display 
modeling uncertainties, then the weights of evidence for different branches may be updated 
to increase the relative weights on branches (i.e., assumption sets) that yield predictions 
that are most consistent with the validation data. 

If the predicted risk metrics do adequately match validation data, as indicated by 
goodness-of-fit tests and model diagnostics (e.g., plots of residuals), then the underlying 
risk model may be used to make predictions for risk assessment within the validated range 
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of conditions. In this case, remaining uncertainty in model parameters and predictions 
should be expressed through confidence intervals for single quantities (e.g., the mean 
illness rate in the population) and through joint confidence regions for multiple correlated 
quantities, such as the risks experienced by members of different subpopulations. 

METHODS AND DATA FOR UNCERTAINTY AND SENSITIVITY ANALYSIS 

Methods for uncertainty analysis have already been discussed for the exposure 
assessment and exposure-response models. They include: 

0 Monte Carlo urrcertainq analysis using commercial software products such as 
AnalyticaTM, @RISKTM, Crystal BallTM) 

c Bayesian uncertainty analysis for estimation of joint confidence regions for model 
parameters and predictions. (e.g., using the free WINBUGS software for Markov 
Chain Monte Carlo Bayesian inference with missing data) 

* Bootstrapping and other resampling techniques for estimating joint confidence 
regions for model parameters and predictions. 

* Model cross-validation for estimating the accuracy and prediction error 
characteristics of model predictions from performance on multiple subsets of data. 

Commercial software tools for uncertainty and sensitivity analysis of risk models are 
increasingly available and appropriate for use in antimicrobial risk assessment as well as 
other areas of risk analysis. See e.g., 

l http://www.palisade.com/html/risk/new~in~risk45.html 
l httn://www.merak.com/kr/files/3 16/DTreeAboutthisrelease.pdf 

METHODS OF UNCERTAINTY AND SENSITIVITY ANALYSIS TO AVOID 

Many past models either ignore model uncertainties or use unvalidated default 
assumptions and then state that the risk results are contingent on these assumptions, Given 
the emerging widespread availability of high-quality uncertainty and sensitivity analysis 
software, risk analyses should now be expected to quantify and present all key sensitivities, 
show estimated variability of risk metrics in the exposed population, and provide 
uncertainty analysis displays for their major conclusions. 
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METHODS AND DATA FOR RISK MANAGEMENT DECISION-MAKING 

Formal methods for risk management decision-making apply the methods and 
frameworks of decision analysis, optimization, and group decision-making to clarify value 
trade-offs among competing goals and to select risk management options that correspond to 
the most preferred probability distributions of consequences. This can be done if relative 
preference weights, called utilities, can be assigned to different possible consequences of 
the risk management decisions being evaluated (e.g., to different values of the individual 
and population risk metrics). The probabilities of these different consequences for different 
risk management decisions are obtained from the output of the risk assessment. Each risk 
management decision being considered leads to a corresponding set of probabilities for 
different consequences and their utilities. The decision leading to the greatest mean value 
of the utility is recommended. 

In practice, this formal decision-analytic approach is seldom directly applicable. 
Different participants may have different preferences for outcomes, be willing to make 
different trade-offs among goals (e.g., minimizing average risk vs. reducing inequities in 
the distribution of risks), and have different tolerances for accepting risks. In such cases, 
agreed-to utilities for different consequences may not exist, and risk management decision- 
making requires negotiation and compromise as well as analysis and deliberation. 
Although the formal process may not be directly applicable, its conceptual framework is 
still useful for organizing analysis and deliberation, separating beliefs from preferences for 
consequences, and identifying and resolving relevant conflicts and/or uncertainties about 
facts and values. 

PARTICIPATORY RISK-MANAGEMENT DECISION PROCESSES 

Societal risk management decisions are usually made by multiple participants and 
reflect the interests of multiple stakeholders with partially conflicting interests and beliefs. 
The participants interact through decision processes in which individual proposals, choices, 
offers, commitments, and actions or behaviors are iteratively modified until an outcome is 
reached. In general, risk management decision processes refer to procedures, typically 
with multiple stages or steps, by which multiple participants jointly determine how risks 
are to be managed. Each participant uses information about what others have done, 
claimed, or offered to decide what to do next. Their interacting decisions determine how 
risks are managed. 

Properties of a risk management decision process that are often associated with its 
perceived legitimacy, and hence with effectiveness in changing people’s attitudes and 
behaviors (e.g., Slavic, 1999), include the following: 
* Identify and involve key players (or “stakeholders”) early on whose expertise, 

participation, assent or consent will later be needed. 
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Give each stakeholder opportunities and a positive incentive to participate (e.g., an 
expectation of helping to make collective choices that he prefers). 
Allow individual concerns, preferences and values to be surfaced, acknowledged, and 
responded to. Confront and resolve conflicts among individual beliefs and/or 
preferences using stated principles for how decisions should be made when individuals 
disagree. 
Partner with stakeholders to build trust in the process, get it used, and improve it over 
time. 

Techniques for managing group dynamics and for organizing and running effective 
meetings and hearings can often create a broadly shared perception that most of these 
elements have been accomplished. For example, making sure that all stakeholders are 
given opportunity to comment; recording and systematically responding to (or at least 
noting) points raised; and actively encouraging participation are simple methods that go far 
toward making a process look and feel legitimate. Allowing participants to take turns 
speaking, keeping and publishing careful notes and written responses to questions and 
issues raised, and providing multiple opportunities to review and comment before a final 
decision is made are all methods for creating perceived legitimacy for public risk 
management processes. 

All group decision processes for risk management have some intrinsic limitations. 
For example, those who set the agendas for group decision processes (and process the 
results) may be able to manipulate the probable outcomes even for decision processes (e.g., 
voting) that are widely perceived as fair and legitimate. If there is private information, then 
strategic misrepresentation of interests and beliefs may also hamper the success of decision 
processes in obtaining fair, efficient outcomes with high probability. 

Approaching risk management decision processes as exercises in joint problem- 
solving by the participants, backed by a commitment to use mutually agreed-on principles 
and procedures (e.g., of fairness or voting) to resolve conflicts when necessary, provides a 
powerful practical approach for creating consensus and acceptance of outcomes despite 
these potential limitations. 

VALIDATION OF RISK MANAGEMENT RESULTS 

A risk assessment model predicts the probable human health effects and other 
consequences of different risk management actions by predicting their impacts on human 
exposures to microbial loads. Following implementation of a risk management decision, 
these predictions should be tested. This is done by conducting an evaluation study to 
assess whether the predicted changes in exposures and health effects actually occurred. If 
not, the risk assessment model may need to be refined (see Validation of Risk 
Characterization) and the recommended risk management decision may have to be revised. 
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APPENDIX B: Example of a Quantitative Health Risk-Benefit Model for Macrolide 
Use in Chickens 

This Appendix develops a simple algebraic population risk-benefit model (equations (7) 
and (8) below) and then estimates its parameters and calculates its outputs using recent data for 
macrolides. The model and parameter estimates are used to support various examples in the main 
text. 

Model Formulation 

This section develops a relatively simple algebraic model of human health impacts from 
changes in animal antibiotic use, based on the idea that the population human health risk from 
animal antibiotic use, defined and expressed in units of expected numbers of adverse consequences 
of different severities (e.g., mild, moderate, severe, or fatal cases) (Buzbv, et al., 1996) per year, 
can be calculated from the formula: 

Population risk = (expected exposures per year) * (expected consequences per exposure). 
(1) 

The incremental population risk caused (if positive) or prevented (if negative) by a change in 
animal drug use is the change in the expected adverse consequences per year, as determined by the 
above product. This model is appropriate for sporadic cases of foodborne illnesses, such as 
campylobacteriosis, that are well approximated by Poisson processes, for which the expected value 
determines the entire probability distribution of values (FDA, 2001). Using conditional 
probabilities, it can also be expanded as: 

Population risk = (expected exposures per year) * (expected illnesses per exposure) * 
(expected adverse consequences per exposure) 

in order to take advantage of separate information about illness rates and their clinical 
consequences, such as number of illness days by severity category. 

For a risk management action that affects multiple types or pathways of exposure (e.g., 
both susceptible and resistant strains of one or more pathogens, perhaps transmitted via more than 
one food animal commodities, or by chicken meats from both AS+ (airsacculitis-positive) and AS- 
flocks) and/or that affects multiple human subpopulations having significantly different exposure 
and/or dose-response characteristics, the above “risk = exposures * consequences” formulas can be 
applied to each exposure path and subpopulation, and the results summed to obtain total population 
risk. (This is because of the additivity of Poisson processes. Statistical algorithms to determine 
significantly different subpopulations from multivariate data include nonparametric clustering and 
partitioning methods such as classification tree analysis (Cox. 2002)) For example, the formula (1) 
for individual risk (expressed as expected illnesses per capita-year from chicken consumption) if a 
fraction F of chicken servings come from carcasses from AS flocks while the rest are from AS- 
flocks, would become: 

E(illnesses per capita-year) = [E(illnesses 1 eat serving from AS+ chicken)*F + E(illnesses 1 eat serving 
from AS- chicken)( 1 - F)]*(Number of chicken servings eaten per year) (2) 

Here, Efillnesses 1 eat serving from AS+ chicken), for example, is the probability of a person 
becoming ill from eating a serving from a chicken from an AS+ flock, if illnesses are not 
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transmitted among people. (If one ill person might infect others, then this probability is replaced by 
the expected number of illnesses caused per serving.) Equation (2) may be abbreviated as: 

Pr(illness) = [Pr(illness 1 AS+)*F + Pr(illness 1 AS-)*(1 - F)}*M (24, 

where F = Pr(AS+) is the probability that a randomly selected serving is from an AS+ bird; and M 
= number of chicken servings consumed per year. 

The same formula can be extended to sum over different types or severities of illnesses. 
For example, it can be applied as follows to calculate expected quality-adjusted life-years (QALYs) 
lost per capita-year from chicken servings that may be contaminated by both susceptible and 
resistant C. jejuni: 

E(QALYs lost per year from chicken consumption) = {E(QALYs lost [ susceptible 
illness)*[Pr(susceptible illness / AS+)*F + Pr(susceptible illness 1 AS-)*(1 - F)] + E(QALYs lost 1 resistant 
illness)*[Pr(resistant illness 1 AS+)*F + Pr(resistant illness 1 AS-)*( 1 - F)]) *M (3). 

If the conditional probability of an illness being antibiotic-susceptible, given that one occurs, is 
approximately the same for cases from AS+ and AS- birds, then we will denote it by: 

s = Pr(susceptible illness 1 illness) = fraction of chicken-caused campylobacteriosis cases that 
are antibiotic-susceptible. 

(If s is different for AS+ and AS- flocks, then separate s’ and s‘ values can be propagated 
throughout the analysis, but there is currently no empirical need for such generality, so we will 
simply use a single s.) Introducing the shorter notations: P’ for Pr(illness ] AS+) (or, more 
generally, P’ = E(illnesses ) AS+), if ingesting a single contaminated serving from an AS+ bird 
might lead to multiple illnesses in one or more victims, e.g., due to contagious infection or 
increased vulnerability to further illnesses); P- for Pr(illness 1 AS-) (or, more generally, P- = 
E(illnesseses [ AS-)); Qs = E(QALYs lost per susceptible illness); and Qr = E(QALYs lost per 
resistant illness), the above formula can then be written as: 

E(QALYs lost per capita-year from chicken consumption) =[sQs + Q,( 1 - s)][(P’)F + (P-)( 1 - F)]M 

= IQr + s(Qs - QNP- + W” - P-)IM (4) 

This still has a simple logical form: “Risk = (illnesses-generating exposures per capita- 
year)*(health consequences per illness)“, where these two terms have been expanded more 
explicitly as: 
l Expected illness-generating exposures per capita-year = [FP’ + (1 - F)P-]M 
. Expected health consequences per illness = [sQs + Qr( 1 - s)] 

If QALYs are not desired as an aggregate summary measure of harm, then these formulas can be 
adapted to estimate expected illness-days or number of illnesses by severity category. For example, 
suppose that a regulator wanted only to know the expected number of antibiotic-resistant cases of 
campylobacteriosis each year that are treated with that antibiotic, without regard for the clinical 
consequences of such a treatment (as in FDA. 2001). Then the correct calculation formula would 
be equation (4) with the QALY weights changed to Qr = 3 and Qs = 0. If the regulator cared only 
about the total number of illnesses, then equation (4) with Qr= 1 and Qs= 1 would give this number. 
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Now, suppose that the regulator wants to know the human health consequences of a 
proposed ban on animal antibiotic use that is expected to prevent a fraction p of all current chicken- 
borne antibiotic-resistant illnesses, replacing them with antibiotic-susceptible illnesses instead. (p 
is the preventable resistance fraction for the ban. It is intended to have an explicit causal 
interpretation, unlike attributable fractions (Cox. 2001, Chapter 4)) If the proposed ban would also 
cause an incremental fraction AF of currently AS- flocks to become AS+, then the risk after the ban 
would be: 

1 -F- E(QALYs lost per capita-year) = ([p(I - s) + s]Qs + Qr( 1 - s)(l - p))[(P+)(F + AF) + (P-)( 
WIM = IQr + (p - ps + s)(Qs - Qr)][P- + (F + WP+ - P-)]M 

Subtracting the pre-ban risk (given by this same formula with p = AF = 0) and simplifying yi elds: 

E(change in QALYs lost per capita-year if ban is implemented) = 
UQr + stQs - QJIPW’ -P-)1 + ~(1 - s)(Qs - Qr)[P- t- F(P+ - P-)])M 

For a population of N identical individuals, the total population health impact from the ban would 
be: 

E(change in QALYs lost per year caused by ban) = 
UQr + stQs - QJIPW” - P-11 + ~(1 - sl(Qs - QW + VP+ - P-IIMN (5) 

Again, the weights Qs and Qr may be adjusted to calculate various quantities of interest, such as 
expected changes in total number of illnesses per year (set Qr = Qs = 1) if the ban is implemented. 

While equation (5) may perhaps not seem close to the goal of a clear, simple risk formula, a 
substantial simplification holds for C. jejuni infections in the US. At present, airsacculitis rates in 
chicken flocks are so low that their contribution to observed campylobacteriosis rates is negligible 
and the fraction of AS+ flocks can be approximated as F ‘= 0. Using this approximation, the model 
for the human health effect of a ban on antibiotic use affecting airsaccuhtis simplifies to: 

E(change in QALYs lost per year caused by ban 1 F = 0) = 
{CQr + stQs - QJIWV’+ - P-11 + ~(1 - s)(Qs - QrW)lMN (6) 

This is easily interpretable. The term p(1 - s)(Qs - Q,)(P-)MN corresponds to: the expected number 
of total current number of C. jejtkni illnesses per year in the population (MNP-) times the fraction 
that are resistant, (1 - s), times the fraction of these resistant illnesses that would be eIim.inated by a 
ban and replaced by susceptible illnesses (p), times the change in health impact for each such case, 
(Qs - QJ. In other words, it is just the expected direct human health benefit from the ban due to 
fewer resistant (and more susceptible) illnesses being created per chicken serving ingested. This 
may also be defined as the preventable human health risk from continued use of animal antibiotics 
under current conditions. We refer to this component of equation (6) as a top-down or furm-to- 
clinic model (in contrast to a bottom-up farm-to-fork model) as it begins with total current number 
of C. jejuni illnesses per year in the population and then apportions a fraction of this total to the 
contribution from animal antibiotic use on the farm. (Qs - Qr) is typically negative (i.e., the change 
in health impact from reduced resistance is a reduction in days lost. To present the same quantity 
with a positive sign, we may interpret p( 1 - s)(Q, - Q,)(P-)MN as the expected illness-days 
prevented per year by a ban. Finally, if illness days are prevented only for a fraction frr of cases 
that (a) Are treated with a resisted drug (fraction = r); and (b) experience treatment failure due to 
resistance to that drug (fraction = f, i.e., treatment would have been uncompromised for (1 - f) of 
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treated resistant cases despite the resistance), then the expected number of illness-days per year 
prevented by a ban becomes: 

Expected illness-days prevented per year = p( 1 - s)fr(Q, - Q,)(P-)MN (7) 

On the other hand, the term: 

Expected illness-days caused = [Qr + s(Qs - Q,)][AF(Pi - P-)]MN (8) 

also has a simpIe intuitive interpretation. It represents the fractional increase in servings per year 
from AS+ flocks instead of AS- flocks, (AFMN), times the change in risk of illness from each such 
serving, (P” - P), times the average health impact of each illness, [Qr + s(Qs - Q,)]. In other words, 
it is the preventable human health loss (i.e., risk) from the ban. This is also the expected human 
health benefit from continued animal antibiotic use under current conditions. 

Equation (7) constitutes a relatively simple, interpretable model for the potential net human 
health impact of changing the status quo to cease animal antibiotic use. Additional refinements 
could be made to reflect the timing of the gradual adjustment from pre-ban to post-ban conditions, 
changes in parameter values over time, and so forth. However, a simple static comparison of 
potential risks to potential bans from a ban may be very useful in addressing the key policy-relevant 
question suggested by the farm-to-fork model: Which is greater, the increase in risk-per-serving 
from additional AS+ flocks, [Qr + s(Qs - QJJ[AF(P’ - P-)J, if a ban is implemented; or the reduction 
in risk-per-serving if a ban is implemented from reduced load of resistant bacteria, p(1 - s)fr(Qr - 
Q,)(P)? To answer this question empirically with the help of equation (6), it is necessary to 
estimate the model parameters from data. 

Estimating Model Parameters from Data 

We begin by estimating the parameters in the expression for human health benefits of a ban 
[i.e., preventable human heahh risks of continued antibiotic use = p(1 - s)fr(Qr - Q,)(P-)(MN)] 
from recent data. 

The model parameters (Qr, Qs, s, AF, P+, P-, p, f, r, M, N) may be significantly different for 
people in different geographic regions or with different ethnic and demographic attributes. Thus, in 
principle, individual risk models can be created for each group with a distinct combination of 
parameter values (corresponding to a cluster within the population or a leaf node in a statistical 
classification tree) and the risk for each group, weighted by its size, can be summed to estimate 
population risk. However, given the aggregate data available from which to estimate model 
parameters, we focus on estimating the average individual risk and total population risk, i.e., the 
average individual risk times the population size. This neglects the individual-level uncertainty and 
variability modeling made possible by stochastic simulation models, but allows population risk 
estimates to be derived in a relatively simple, easily verified way from available data. 

Estimating (Qr - Q$: H uman health impact of resistance 

To estimate a human health impact from antibiotic use in animals, there must be a 
measurable or assumed difference in the human health consequences of antibiotic-resistant versus 
antibiotic-susceptible strains of Campylobacter, corresponding to the difference (Qr - QJ in the 
model. This difference typically depends on the medical treatment that a patient receives. We 
distinguish among the following possible cases: 
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Patients who receive no treatment: In this case, we assume that there is no difference in average medical 
outcomes, i.e., Q5 = Qr. Barza and Travers (2002) suggest that resistant C. jejuni may opportunistically 
infect a patient treated with antibiotics for some other reason. This seems plausible a priori, unless 
antibiotic treatment in vivo is effective against (in vitro) resistant bacteria as well as susceptible bacteria. 
However empirically, in recent case-control data (e.g., Friedman et al.. 2000, Effler et al., 2001, raw data 
analyzed in Cox, 2002), patients who eat chicken and take antrbiotics for non-campylobacteriosis reasons 
are not at greater risk of resistant campylobacteriosis than patients who do not. Indeed, in these data sets, 
chicken consumption is associated with significantly smaZler risks of campylobacteriosis [perhaps due to 
acquired immunity, previously demonstrated for raw milk consumption (Blaser et al., 1987; see also 
Walz et al, 2001)]. 
Patients who receive treatment but don’t need it. Again, we assume that, in these patients, that there is 
no difSerence in average medical outcomes, i.e., Q, = Qr. In agreement with Ang and Nacham. 2003 (UJ 
&), the CDC states that: 

“The disease is usually self-limiting, so antibiotic treatment is only indicated in severe cases. Erythromycin is the 
drug of choice, with ciprofloxacin as a suitable alternative in adults. Cases of septicaemia are best treated with 
gentamicin, but erythromycin, chloramphenicol and tetracycline may also be used. The faeces often remain 
positive for 2-7 weeks, but long-term carriage is rare. Treatment with erythromycin may significantly shorten the 
duration of excretion.” (http:/iwww.cdc.gov/ncidod/dbmd/diseaseinfojcampv~obacter e.htm) 

Thus, only severe cases of campylobacteriosis warrant treatment with antibiotics. In clinical practice, 
when a diagnosis of campylobacteriosis has not yet been made ffuoroquinolones or other broad spectrum 
antibiotics may be prescribed as empiric treatments, so that many non-severe cases end up being 
prescribed these antibiotics that would not be if better information were available. However, this practice 
brings no clear clinical benefit to adult patients and is changing as more rapid, accurate diagnostic tests 
for campylobacteriosis become available (e.g., Endtz et al.. 2000) and as physicians become more 
sensitive to the importance of halting over-prescriptions of human antibiotics in non-essential cases 
where no clinical benefit is expected (WHO. 2003). We assume that there are no human health impacts, 
either beneficial or adverse, from prescribing antibiotics to non-severe cases for whom treatment would 
not be indicated if the physician had perfect diagnostic information. 

* Patients who receive treatment and for whom treatment is appropriate. Current clinical practice, as 
reviewed above, specifies that treatment with erythromycin or ciprofloxacin may be indicated for severe 
diagnosed cases. We focus on these cases as the ones for which appropriate treatment with antibiotics is 
recommended to achieve potential clinical benefits. However, the average true clinical benefit from 
treatment in terms of resolution of symptoms remains controversial (Ang and Nacham, 2003, ticit). 
The extent to which severe cases of C. jejuni (which are often associated with AIDS or other severe 
underlying illnesses and have symptoms that have lasted for over a week) receive erythromycin and 
ciprofloxacin treatment, as well as the relative clinical impacts of those treatments in resistant and 
susceptible cases, are not known. Severe cases comprise only less than 1% (approximately 0.595%) of 
all cases of campylobacteriosis (Buzbv. et al.. 1996), making the study of clinical outcomes specifically 
for severe cases difficult for existing case-control data. However, as a baseline value, and in the absence 
of more relevant (specifically chicken-associated, severe illness) data, we wilI assume that a plausible 
worst case is that treatment failures might create an average of two excess days of treatment as 
physicians monitor the results of the treatment and/or wait for the results of a resistance test before 
switching to an alternative therapy (Ang and Nacham. 2003, op tit). Thus, we make the baseline 
assumption that (Qr - QJ = 2 days of excess illness and treatment for severe cases that fail to respond 
normally to erythromycin therapy due to resistance. Sensitivity analysis is then used to study the effects 
of varying this starting assumption. 

The fraction f of patients with severe campylobacteriosis who fail to respond normally to initial 
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erythromycin therapy due to resistance is not known. To be conservative, we assume that the true 
fraction could be as high as 1. 

To bound uncertain quantities by their most extreme possible values, we assume that all severe 
cases of campylobacteriosis seek treatment and that all are prescribed antibiotics. According to 
CDC-FoodNet surveillance data, about 55% of campylobacteriosis patients who are prescribed 
antibiotics receive fluoroquinolones (usually, ciprofloxacin) (FDA-CVM. 2001). Assuming that 
fewer than 20% of those fluoroquinolone-treated cases eventually switch to erythromycin or 
another macrolide, the total fraction of severe campylobacteriosis cases treated with macrolides is 
at most about 0.50. 

Estimating M, N, and P: Total severe C. jejuni cases per yearfrom chickens in the US 

The first six lines of Table 4 summarize the parameters and data sources used to estimate 
the number of severe campylobacteriosis cases per year caused by consumption of food 
contaminated by chicken-borne C. jejupli, corresponding to the product (P)(MN) in the model when 
the model is applied to severe cases only. (Henceforth, all calculations are made only for the 
treatment group consisting of patients with severe campylobacteriosis who receive antibiotic 
treatments. Although the model formally requires performing calculations for the other treatment 
groups, i.e., persons without severe cases and/or without antibiotic treatment, and then summing the 
results over all groups to calculate population risk, in practice, as explained above, the health 
impact parameter (QS - QJ is assumed to be 0 for these other groups, making it unnecessary to 
carry out the calculations for them.) 

Since essentially all chicken-borne C. jejuni cases are assumed currently to come from AS- 
flocks, the current average risk of campylobacteriosis per serving of chicken from AS- flocks 
(including po SSI ‘bl ff t e e ec s of cross-contamination to other foods in the kitchen), denoted by P- in 
the model, can be estimated by dividing the estimated total number of chicken-caused (severe) 
campylobacteriosis cases per year by the total estimated number of chicken servings ingested per 
year: 

P-= (total chicken-caused severe cases)/(total servings) = (total severe cases * fraction from chicken)/( 

The two quantities M and N are readily available: N = number of people in the US = 29236 (Us 
Census), while M = average chicken servings per capita-year in the US has been estimated as 38.0 
servings/year for “fresh” chicken that might be carrying C. jejuni (Cox and Popken, 2002, based in 
part on data from FDA-CVM, 2001). Precision in these estimates is unnecessary as uncertainty 
about these two parameter values cancels out in calculations of relative risks and relative 
risk:benefit ratios for a ban: only their product (MN) is used in the model (equation (6)) to scale 
from relative to absolute numbers of cases with and without a ban. 

Multiplying the first five factors from Table 4 gives the estimated total number of severe C. 
jejuni cases per year in the US: 

(13.37 reported campylobacteriosis cases/l 00,000 capita-year)*(0.00595 fraction that are severe 
enough for antibiotic treatment to be indicated)*@ assumed severe cases per reported 
case)*(292,000,000 people in US)*(O.99 C. jejuni) = (13.37)*(0.00595)*(8)*(2920)*(0.99) = 1,840 
severe C. jejuni cases per year. 
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Uncertainties in this calculation include uncertainty about the true proportions of C. co/i and other 
non-jej~ni spp. (assumed here to be only I % based on general CDC data, but possibly on the order 
of a few percent) and considerable uncertainty about the true number of cases for each reported 
case. Mead et al. (1999) (o-a tit) suggested 38 as a reasonable guess for most (non-severe) cases, in 
the absence of Campylobacter-specific information, and “arbitrarily used a far lower multiplier of 
2” for severe cases. Since we focus on severe cases, 2 may be more appropriate as an under- 
reporting factor than 38. Rather than select a single number for this uncertain quantity, we will treat 
it as a subjectively random variable with a plausible range (interpreted as a subjective 95% 
probability interval) from 2 to 38. This subjective uncertainty assessment can be expressed as a 
random variable with a median value of 8 with an uncertainty factor of about 5 (i.e., the true value 
could be from 8/5 to 8*5). 

Such geometric medians and uncertainty factors for highly uncertain parameters values are 
useful for quickly approximating and expressing uncertainties in cases where the published 
literature specities a wide range of possible values for the same uncertain quantity. They also 
support approximately log-normal uncertainty distributions for the outputs of sequences or 
networks of calculations with multiple uncertain quantities (Druzdzel, 1994). If each term in the 
benefit formula p(1 - s)(Qs - Q,)(P-)(MN) . h IS c aracterized by a point estimate and a 
multiplicative uncertainty factor, interpreted as a geometric mean (or median) and geometric 95% 
confidence interval, then these estimates can easily be combined, as discussed below, to estimate 
the approximate log-normal distribution for the entire product. 

The next factor in Table 4 is the estimated fraction of C. jejuni cases caused by 
contaminated chicken (possibly via cross-contamination of other foods). This is a crucial 
parameter, and, unlike the product (MN), it does not cancel out in further analyses. Uncertainties 
about it propagate directly to uncertainties about P- and about ‘the potential human health benefits 
from a ban on antibiotics used in chickens. Therefore, it is worth carefully examining possible 
empirical data for estimating this fraction. 

While Mead et al. (O-D tit) assumed that 80% of campylobacteriosis illnesses are food- 
borne, based on a 1992 study (and translating “most” as 80%) and FDA-CVM (2001) assumed that 
about 57% of all C. jejuni cases are caused by consumption of chickens based on pre-1985 data, 
more recent evidence suggests that much lower numbers may be appropriate now. Based on post- 
2000 data for outbreaks and sporadic cases, population risks might be allocated among competing 
sources roughly as follows: Foreign travel: > 10% (Friedman et al., 2000); Drinking undisinfected 
water: > 50% (Kanperud et al., 2003 for Norway. Rates of drinking unprocessed ground water are 
probably lower in the US, but water-borne cases may still account for many sporadic cases.); 
Contact with infected pets and/or farm animals or farm visits: > 5% (Gillespie et al.. 2003; 
Friedman et al.. 2000; 18% for poultry husbandry in rural populations estimated by Potter et al., 
2003); AIDS, sexual transmission: 4% or more, especially for resistant Campylobacter (Gaudreau 
and Michaud. 2003; Sorvillo et al.. 1991); Unpasteurized milk: At least 1% (Gillespie et al.. 2003). 
Then only the remaining 30% of cases might be due to food-borne C. jejuni. This would then be an 
upper bound on the fraction due to chicken-borne C. .jejuni. 

Genetic typing data suggest that the true fraction of campylobacteriosis cases caused by 
chicken consumption may be far less now than implied by previous assumptions. For 
example: 

l Nadeau et al. (20021 found that only “approximately 20% of human Campylobacter 
isolates were genetically related to genotypes found in poultry ” 

l Hein et al. (20031 noted that “A small number of human isolates [11 out of 1011 shared 
PFGE/AFLP types with poultry isolates [sampled at slaughter in Austria], however, further 
studies should also focus on the identification of other sources of C. jejuni infection in 
humans.” 
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l Moore et al. (2003) stated that “Human campylobacteriosis is currently the most common 
cause of acute bacterial gastroenteritis on the island of Ireland... It was the aim of this 
study to examine the phenotypic and genotypic relatedness of campylobacters isolated from 
chickens and humans locally. Sixty isolates were subtyped using phenotyping techniques 
(biotyping, phage-typing), as well as genotyping techniques (multilocus enzyme 
electrophoresis (MEE), ribotyping) and the data compared. The frequency of shared 
phenotypes and genotypes between poultry and humans varied depending on the typing 
technique employed ranging from 98.2% of human isolates sharing a similar resistotyping 
(MAST) disc type with poultry strains to 20% similarity with MEE typing.” 

Interpreting such genotype data in terms of sources can be difficult and controversial (Schouls et al. 
1(2003)). The 20% number from Nadeau et al. is about double the estimate of 10% from the genetic 
data of Wu et al. (2002) in a study of quinolone-resistant Campylobacter in Taiwan. Even if 20% 
is viewed as a plausible constraint on the maximum fraction of human isolates that could come 
from eating chicken, an unknown part of it may be due to common environmental reservoirs (such 
as contaminated water) shared by chickens, humans, dogs, lambs, and other species having 
overlapping C. jejuni genotypes. 

Epidemiological data can complement genotyping data in estimating the true fraction of 
campylobacteriosis cases that are likely to be caused by eating chicken. For example: 

. A recent prospective case-control study from Quebec (Michaud et al., 2002) identifies poultry as the 
“principal suspected source of infection” in only about 10% of cases, comparable to drinking tap 
water at home (9%). 

. Our analysis of data of KapDerud et al. (2003) Gem Norway (personal correspondence, not shown) 
suggests that 71211 = 3.3% of cases can be associated with eating undercooked poultry, after 
adjusting for other variables in a non-parametric classification tree model. (Eating undercooked 
poultry is associated with eating other undercooked meats, so not all the excess risk associated with 
eating undercooked poultry is necessarily caused by it.) 

l In the Friedman et al. (2OOOb) CDC case-control data set, the population-attributable risk (PAR) for 
chicken consumption as a whole among non-travel, non-treatment-related cases is negative (an 
apparent “protective effect” if interpreted causally, perhaps due to acquired immunity). The PAR for 
eating chicken specifically in restaurants, where many meats are known to be risk factors (ibid), is 
only 3.1% using a standard univariate PAR formula for 2 x 2 tables 
(http://watson.hgen.pitt.edul-dweeksiodds_ratio.html) with input values of a = 665, b=341, c=1439, 
d=976.) In multivariate analyses, it is not significantly different from zero. SimilarIy, Effler et al. 
l2001), Table 1, shows that overall chicken consumption is associated with a statistically significant 
dower risk of campylobacteriosis (relative risk: RR = 0.6). Restaurant chicken is again identified as 
a risk factor (adjusted odds ratio = 1.8, p = 0.03) as found for other foods eaten in restaurants and 
commercia1 settings (Friedman et al.. 2000b). 

. An admittedly simplistic alternative approach would be to note that Campylobacter levels in 
processed broiler carcasses may already have been reduced by about 90% since the mid-nineties 
(Stern and Robach, 2003). Then, assuming a proportional reduction in human risk of chicken-borne 
campylobacteriosis, the true fraction of campylobacteriosis cases caused by eating chicken may have 
fallen from a pre-I 995 value of at most 100% to a current value of at most 10%. 

Based on these data, a plausible range of values for the true but unknown fraction of 
campylobacteriosis cases currently caused by eating chicken might correspond roughly to a point 
estimate of about 0.10 with an uncertainty factor of about 3 (i.e., from 0.03 to 0.30). Because this 
parameter is so critical, we will also consider a sensitivity analysis in which the uncertainty factor is 
increased to 10 (corresponding to a range from 0.01 to 1.00) to determine how this affects 
confidence in the conclusions of the analysis. 
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The average probability that a serving of chicken from an AS- flock will cause a (severe) 
case of C. jejuni can be estimated from the above numbers. It is: 

P- = (total severe cases * fraction from chicken)/ = ( 1840*0 10)/(3J*292.000.000) = 1.65833- --.A-.-. 
8 average severe C. jejuni campyiobacteriosis cases caused per chicken serving (from an AS- 
flock). 

This estimate of P- is based on population averages, without accounting for interindividual 
variability (including variations associated with ethnic and demographic attributes) in model 
parameters such as numbers of meals eaten, thoroughness of cooking, differences in immune status 
and vulnerability, etc. Thus, it should only be used for calculating aggregate population risks rather 
than risks for any specific individual. The expression (P-)(MN) = expected number of chicken- 
caused severe C. jejuni cases per year in the US population is just the numerator, (1840’0 10) = 184 --.A--- 
cases per year. 

Estimating (P’ - F): Excess risk of C. jejuni cases per serving from AS+ chickens 

Mortality due to Mycoplasma gallisepticum in broilers ranges from “low” in uncomplicated 
cases to 30% in complicated outbreaks, especially during cold months (Yoder, 1991). Most birds in 
infected flocks survive, but their carcasses are often underweight and contribute disproportionately 
to increased fecal contamination and microbial loads during processing. In a recent study, 
airsacculitis-positive (AS+) flocks were associated with significantly increased average levels and 
incidence of Campylobacter, E. coli, and Salmonella at processing (Russell, 2003). AS+ flocks 
have greater variability in carcass sizes (see also Engster, et al., 2002) and weakened digestive 
tracts, which in turn increase processing errors and increase fecal contamination levels and 
microbial loads. Russell measured microbial Campylobacter spp. loads (ch&ul) on carcasses of 
AS+ and AS negative (AS-) flocks before the inside/outside bird wash (IOBW) step of chicken 
processing. The mean logi0 microbial load of campylobacter colony-forming units (cfus) for AS+ 
flocks was 1.09 while the mean for AS- flocks was 2.09; thus, the microbial load was IO-fold 
higher for the AS+ flocks. Although there was considerable flock-to-flock variability, this ten-fold 
increase in Campylobacter loads could have significant human health consequences when averaged 
over multiple AS+ flocks. 

To estimate the corresponding risk from chicken servings from AS+ flocks, a refined 
exposure model is needed to account for effects of airsacculitis (AS+) on microbial loads of C. 

jejuni. To this end, we use a model previously suggested by FDA’s CVM 
(www.fda.gov/cvm/antimicrobial/RRAIntro.pdf) for risk assessment of campylobacter. The model 
assumes that: 

. The logi0 of the microbial load distribution of campylobacter reaching consumers via 
chicken servings is approximated by an exponential distribution. CVM suggested this 
distribution for modeling variability in chicken-borne campylobacter exposures based on 
mathematical convenience rather than on empirical grounds. It may be plausible insofar as 
it places greater probability densities on smalIer microbial loads over several orders of 
magnitude of cfu/ml. 

n Microbial load distributions at the point of consumption are proportional to microbial loads 
following processing. An uncertain reduction factor a expresses proportionality between 
c&/ml measured in processing rinse fluids and cfu/chicken serving at the point of ingestion. 

These assumptions imply the mathematical model: 
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Pr(log ingested dose > x 1 AS-) = ema”, 

where 

l/? = mean number of log-&/ml of chicken rinse fluid at post-processing (= ln(10*1.09) = 2.51 
based on data of Russell, 2003, implying an estimated value for ? of? = l/2.51 = 0.3984.) 

Substituting log(MlD) for x then gives a formula for Pr(ingested dose > MID 1 AS-) = 
Pr[log(ingested dose) > log(MID) 1 AS-] = e-a?iop(M’D), where MID = minimum infectious dose 
(possibly 1 cfu). independently, we can also estimate the probability of an infectious dose in a 
chicken serving under current conditions (i.e., Pr(ingested dose > MID 1 AS-)) from data, as 
foIlows: 

l Main formula: Pr(ingested dose in a chicken serving > MID 1 AS-) = (total cases per year from 
chicken consumption)/(total chicken servings per year * fraction of infectious servings that cause 
cases of illness) 

. Total cases per year from chicken consumption = (1.337E-4 reported cases per capita-year, from 
CDC, 2003)*[% estimated total cases per reported case (all cases, not just severe ones treated with 
macrolides), from Mead et al., 1999]*(m estimated fraction of cases from chicken consumption, 
from above based on genotyping, epidemiological, and historical (Stem and Robach, 2003) 
data)*(292E6 people in US, from U S Census data) = (1.337E-4)*38*0.10*292000000 = 148,354 
cases/year. If 99% are C. jejuni, then this can be rounded to 1.4735 C. jejuni cases per year from 
chicken consumption. In this calculation, all cases are estimated (rather than only severe ones 
warranting antibiotic treatment and resistant to such treatment), as the purpose is to estimate the total 
excess cases per year (not just resistant ones or those leading to treatment failure) that could be 
caused by increased airsacculitis following a ban of animal antibiotics. 

. Total chicken servings per year = (M = 3IJ fresh chicken servings/capita-year)r)*(N = 292E6, from 
above) 

* Fraction of infectious servings that cause illnesses was estimated by Rosenouist et al.. 2003 as about 
0.2 based on human feeding data and assuming, as in WHO, 2002, that the conditional probability of 
illness given an infectious dose is approximately constant, independent of the size of the dose. 
Rosenquist et al.. 2003 uses an experimental value of 0.22 (1 l/50) with a beta uncertainty 
distribution. WHO. 2002 states: “In the case of the feeding trial data for C. jejuni A3249 the 
probability of illness decreases with increasing dose and as such a decreasing hazard function has 
been estimated (Teunis et al. (1999)). However, when the data for both strains are pooled the 
conditional probability of illness following infection does not exhibit a dose relationship but rather is 
randomly distributed (Figure 4.8). It may be appropriate in this case to use a dose independent ratio 
to estimate the conditional probability of illness. The conditional probability can be estimated from 
the feeding trial data. For A3249, out of 50 people that got infected at various doses, 11 got sick 
(22%), while for 81-176, out of 39 people that got infected at different doses, 18 got sick (46%). 
Overall, pooling all the data, a total of 29 people got sick out of 89 individuals that were infected 
(33%)” For comparison, Finch and Blake (1985) report a median attack rate of 0.41 in outbreaks 
following high exposures in various food vehicles. We will use the observed median attack rate 
value of 0.41 (Finch and Blake, 1985) as it is based on outbreak data from a mix of populations, 
strains, and food vehicles under real exposure conditions. This value is slightly higher than the 33% 
estimated by WHO from the feeding data. 

. Substituting the above values into the main formula gives: Pr(ingested dose > MID ] AS-) = (total 
cases per year from chicken consumption)/(total chicken servings per year * fraction of infectious 
servings that cause cases of illness) = (1.47E5 cases/year)f( ~*292000000*0.41) = 3.233-5. 

Equating this empirical estimate to the above formulas gives: 
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